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A B S T R A C T

Climate change and urbanization have intensified the urban heat island (UHI) effect, significantly impacting 
urban living environments. While existing studies have yielded valuable insights into macro-scale thermal en
vironments, this study shifts the focus toward microscale residential contexts, where localized urban form and 
land use patterns critically shape thermal conditions.

In this study, we analyzed the temporal variations in LST in a residential neighborhood of Okgye-dong, Jung- 
gu, Daejeon, South Korea. High-resolution thermal imagery captured by unmanned aerial vehicles (UAVs) and 
interpretable machine learning (ML) techniques were used to model and analyze thermal patterns at the 
microscale. The study site, adjacent to a river and designated as an Urban Regeneration Area, is particularly 
vulnerable to summer heat.

Exploratory data analysis (EDA) was conducted to examine statistical characteristics and spatial patterns, 
followed by confirmatory data analysis (CDA) using nonlinear regression models such as CatBoost, Random 
Forest, and XGBoost. The results showed that the importance of variables influencing LST varied by time of day. 
However, meteorological variables such as solar radiation, wind, and humidity were not included due to data 
limitations.

Among the key findings, alley width, shadow ratio, and distance from the river emerged as dominant variables 
affecting thermal conditions in residential areas. This study contributes to identifying time-sensitive drivers of 
urban thermal vulnerability by leveraging UAV-based imagery and ML. Based on these findings, we propose 
specific policy-oriented strategies for heat mitigation in urban regeneration areas, including improving airflow in 
narrow alleys by removing obstructions or illegal parking, expanding riverside green spaces to enhance cooling 
effects, and installing vertical shading elements to reduce localized heat stress and improve thermal comfort.

These results are particularly valuable for urban regeneration projects, where thermal vulnerability is often 
intensified by high building density and limited green infrastructure. The proposed strategies—such as opti
mizing alley width, increasing shade coverage, and enhancing riverside green spaces—can be effectively 
incorporated into localized urban redevelopment plans to improve thermal comfort and resilience.

1. Introduction

Owing to rapid urbanization and ongoing climate change, the urban 
heat island (UHI) effect has emerged as a major environmental issue. 
Rapid urbanization replaces natural landscapes with impervious sur
faces, altering surface radiation, thermal properties, and humidity in 
urban areas [1]). The thermal properties of asphalt and concrete can 
ultimately impact climate change and the natural environment [2]. In 

addition, previous studies report a significantly higher rate of temper
ature increase in urban areas compared to non-urban areas, compared to 
that in non-urban areas; this highlights the need for in-depth research on 
the thermal environment of urban areas [3–6]. Zhang et al. [7] studied 
changes in Nanjing’s urban thermal environment and predicted that by 
2030 and 2040, the city’s LST would increase by 8.79 % and 10.92 %, 
respectively, with LST continuing to rise.

The UHI effect not only compromises the quality of life in urban 
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areas but also causes health problems for people dwelling in cities; 
additionally, it also leads to increased energy consumption, thereby 
posing major challenges for sustainable development. As globalization 
continues to impact the ecological environment, the ongoing rise in LST 
increasingly threatens human living and production conditions [8]. 
Common measures to improve urban thermal environments include 
river regulation, creation of open spaces, and landscape planting. These 
nature-based solutions are known to have a cooling effect and may 
decrease the temperatures of the areas that surround natural elements 
[9]. For example, according to Fan et al. [10], the temperatures in the 
areas located near rivers were 3–5 ◦C lower than those in adjacent built- 
up areas. This phenomenon may help mitigate the UHI effect.

Recent studies have also emphasized the critical role of surface 
materials in shaping microclimatic conditions and thermal comfort. 
Zhang et al. [7] demonstrated that impervious materials such as asphalt 
and concrete result in elevated LST and reduced thermal comfort levels, 
whereas permeable surfaces and vegetation-covered areas contribute to 
more favorable microclimatic conditions. Their ENVI-met simulations 
revealed that the Physiological Equivalent Temperature (PET) in vege
tated zones was significantly lower than in built-up areas, underscoring 
the importance of surface composition in urban heat mitigation 
strategies.

Residential areas are more sensitive to heat stress than other types of 
land use due to densely populated buildings and low green space ratios, 
which lead to heat accumulation and poor heat dissipation [11–14]. 
Notably, if an area has a high ratio of populations vulnerable to heat (e. 
g., elderly or children), the sensitivity of the area to heat stress is high. 
Huang et al. [13] reported that elderly residents who engage in outdoor 
activities in a public housing estate were exposed to a significant level of 
heat stress. This is because the asphalt and concrete surfaces within the 
housing estate cause an increase in the ambient temperature near the 
surfaces. This suggests that housing estates may increase the risk of heat- 
related illnesses, such as heatstroke. Recent longitudinal studies have 
further emphasized how long-term land cover changes can exacerbate 
thermal discomfort in urban residential areas. Long-term reductions in 
green space are known to significantly deteriorate thermal comfort 
conditions, especially in high-density residential areas. These results 
underscore the necessity of incorporating thermal comfort assessments 
into long-term urban redevelopment and land use planning strategies.

Previous studies have shown that the cooling effect of urban water 
bodies depends on their physical characteristics such as size, shape, and 
surrounding airflow [15,16]. In addition, spatial imbalances in pro
duction, living, and ecological functions also contribute to disparities in 
thermal comfort across urban areas.

Several studies have attempted to define threshold values of effi
ciency (TVoE) for the cooling performance of urban green spaces. For 
example, Le et al. [17] and Yu et al. [18] reported that 0.5 ha was 
effective in temperate monsoon and Mediterranean cities, while Yang 
et al. [19] found that 0.69 ha was more appropriate for high-latitude 
regions. However, the cooling efficiency of green space is also affected 
by time of day, seasonality, and spatial form, leading to significant 
variability across studies [20,21]. These inconsistencies highlight the 
need for context-sensitive urban design when applying green infra
structure for UHI mitigation.

Most previous studies analyzing urban thermal environments used 
low-resolution satellite images, such as Landsat and MODIS [22]. 
Although suitable for large-scale cartographic production, these data 
sources have limitations in capturing spatial variations at the micro
scale. For example, when evaluating the cooling effect of urban parks or 
green spaces, results based on coarse-resolution satellite imagery often 
fail to reflect the thermal conditions actually experienced by urban 
residents. This discrepancy highlights the necessity of using high- 
resolution datasets for assessing local heat environments. This study 
addresses this research gap by employing UAV-based high-resolution 
thermal imagery and interpretable machine learning to analyze local
ized thermal patterns that are often undetected in conventional satellite 

assessments.
Compared to satellite-based approaches such as Landsat and MODIS, 

UAVs offer significantly higher spatial resolution and greater flexibility 
in data acquisition. This capability is particularly valuable for detecting 
micro-scale thermal variations—such as narrow alleys, localized 
shading, and vegetation patches—that are commonly overlooked in 
coarse-resolution satellite imagery [23,24]. UAVs can operate at low 
altitudes and capture thermal imagery at user-defined times, allowing 
targeted observations under specific solar and meteorological condi
tions, such as during peak irradiance or shadow formation. These ad
vantages are especially important in older or irregular residential areas, 
where built environments create highly heterogeneous microclimates. 
When coupled with interpretable machine learning algorithms such as 
Random Forest and CatBoost, UAV-derived thermal imagery enables the 
modeling of nonlinear, context-specific patterns in LST. This integration 
improves the identification of localized thermal drivers and supports 
microclimate-sensitive planning strategies based on spatially explicit, 
empirical evidence [25,26].

Machine learning is excellent for processing large amounts of data 
and analyzing relationships between various variables. In particular, by 
analyzing various factors influencing thermal vulnerability (e.g., 
building density, green area ratio, distance from water bodies, etc.) and 
building a predictive model, thermal vulnerability can be analyzed more 
precisely. This helps to efficiently identify key factors related to heat 
stress in various urban environments [25,26]. For example, Zhang et al. 
[27] used the random forest (RF) algorithm, a representative machine 
learning model, to predict the surface urban heat island (SUHI) intensity 
in a region in China. This approach ensures that the measurement of the 
thermal environment of an urban region is close to that experienced by 
the people living in the region; thus, this can support effective man
agement and planning of the urban thermal environment. In addition to 
urban applications, machine learning has also proven valuable in 
modeling large-scale ecological responses to LST variation. Zhang et al. 
[7] showed that seasonal changes in global LST significantly influence 
gross primary production (GPP), with elevated summer temperatures 
suppressing photosynthetic activity and winter warming enhancing GPP 
in high-latitude regions. Their findings underscore the versatility of 
machine learning in capturing nonlinear, spatiotemporal dynamics be
tween land surface processes and ecosystem responses.

While recent studies have increasingly emphasized the roles of ver
tical canopy structure, combined evapotranspiration–shading cooling 
dynamics [16], and socio-ecological vulnerability in heat health risk, 
few have integrated these perspectives using high-resolution UAV data 
and interpretable machine learning. Most existing UHI studies rely on 
satellite imagery or field measurements, often lacking the resolution and 
flexibility required to uncover microscale dynamics within densely built 
environments. This study addresses this gap by employing UAV-based 
thermal imagery and interpretable machine learning to identify time- 
varying key drivers of thermal vulnerability at the neighborhood level, 
especially within older residential and urban regeneration areas. By 
doing so, this research contributes to the growing body of literature on 
localized and time-sensitive UHI mitigation strategies that incorporate 
structural, ecological, and social dimensions.

This study offers a novel methodological framework that combines 
microscale thermal data from UAV imagery with interpretable machine 
learning to analyze dynamic heat vulnerability in aging residential 
areas. Unlike many prior studies focused either on large-scale spatial 
correlations or single-time measurements, this approach captures time- 
varying patterns of LST across narrow alleys, localized shade, and 
proximity to water bodies. It also addresses limitations of low-resolution 
satellite imagery and linear modeling by providing a more granular, 
flexible, and explanatory assessment of urban thermal environments. 
The ultimate goal of this study is to analyze the thermal environment of 
aging residential areas, such as urban regeneration zones, using high- 
resolution UAV imagery and machine learning techniques. This 
approach aims to overcome the limitations of conventional satellite- 
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based analyses and provide insights that can directly support urban 
planning and thermal risk management.

2. Methods

This study targeted aging residential areas that are vulnerable to 
heat. Data for the area, acquired using UAVs and thermal imaging 
cameras, was preprocessed. UAVs and sensors were used to measure 
thermal environment variables at different time slots. Next, Exploratory 
data analysis (EDA) was conducted to identify patterns in the acquired 
data and assess their impact on the urban thermal environment. 
Furthermore, independent variables potentially influencing the thermal 
environment in the residential area were examined, with a focus on 
alleys where residents’ activities and movement take place. Confirma
tory data analysis (CDA) was conducted to evaluate various machine 
learning (ML) models and select the most effective one; this analysis also 
highlighted the importance of independent variables for effective urban 
thermal environment management. The research flowchart is presented 
in Fig. 1.

2.1. Selection of study area

The selected study site is a residential area in Gao Bridge, Okgye- 
dong, Jung-gu, Daejeon, South Korea, located upstream of the Dae
jeoncheon River (Fig. 2). This area represents the typical topographical 
features of Daejeon’s urbanized basin and has been designated as an 
Urban Regeneration Area due to its vulnerability to extreme heat. It is 
characterized by a high proportion of elderly residents and a dense 
concentration of aging housing. Population density was assessed using a 
100 × 100 m grid. The area experiences an average summer temperature 
of 24.1 ◦C and a maximum of 39.4 ◦C, indicating significant risk for heat- 
related illnesses such as heatstroke.

The study area demonstrates key morphological traits commonly 
associated with heat-vulnerable urban zones in South Korea, such as 
narrow alleys, densely packed low-rise housing, limited vegetation, and 
extensive impervious surfaces. Although not officially designated as an 
urban regeneration zone, its physical deterioration and microclimatic 
exposure closely resemble those areas. As such, insights gained from this 
site may inform urban planning strategies for other neighborhoods with 
similar environmental and structural vulnerabilities.

2.2. Data collection

Two types of UAVs were used for data collection in this study: the 
Inspire1 Pro and Mavic Pro (both from DJI Innovations, China). The 

Inspire1 Pro weighs 2.9 kg and has a maximum flight time of 20 min. 
The Mavic Pro is lighter, weighing 734 g, with a maximum flight time of 
27 min. Both UAVs have a maximum flight speed of 18 m/s. The Inspire1 
Pro can fly autonomously and offers stable flight. Additionally, it allows 
for attachment of a thermal infrared sensor, making it suitable for this 
study. The Mavic Pro was selected to create a detailed map of alleys in 
the target area due to its lightweight design and autonomous flight 
capability exceeding 25 min.

The Zenmuse XT thermal imaging sensor (FLIR Systems, USA) was 
used for image capture. This sensor provides an image resolution of 640 
× 512 pixels, with a spectral band of 7.5–13.5 μm, and operates within a 
temperature range of − 25 ◦C to 135 ◦C. The Mavic Pro’s optical sensor 
was a 1/2.3-inch CMOS with an image resolution of 4000 × 3000 pixels. 
The Inspire1 Pro was equipped with the Zenmuse XT thermal sensor, 
while thermal images of the study area were captured using the optical 
sensor on the Mavic Pro. Details of the UAVs and sensors used in this 
study are provided in Table 1.

UAV flights were conducted at 8:50 AM, 12:20 PM, and 2:50 PM on 
June 5, 2023, each lasting approximately 30 min. These time slots were 
selected to represent the typical diurnal progression of LST under clear 
sky conditions. Specifically, 09:00 represents the morning heating 
phase, 12:30 captures the midday peak, and 15:00 reflects post-peak 
thermal retention, enabling comparative analysis of hourly tempera
ture dynamics. This design ensures that temporal variability in the 
thermal environment is captured without requiring full-day monitoring.

This selection was informed by previous urban climate studies 
[28,29]and solar irradiance patterns in mid-latitude cities, where LST 
typically begins to rise rapidly after 08:00, peaks between 12:00 and 
14:00, and remains elevated until mid-afternoon before declining. By 
targeting these time points, the study effectively captures distinct ther
mal phases—initial accumulation, peak intensity, and delayed reten
tion—without requiring continuous full-day monitoring.

The flight altitude was maintained at approximately 100 m, with a 
forward and side overlap of 80 % and 60 %, respectively. These pa
rameters were chosen to ensure high spatial resolution and minimize 
distortion in the resulting imagery. Insufficient overlap or inappropriate 
altitude can lead to geometric distortions, misalignments, or gaps during 
orthomosaic generation, directly affecting the accuracy of LST calcula
tions and spatial pattern analyses. Therefore, flight parameters were 
carefully optimized to enhance the reliability of the UAV-based thermal 
environment assessment.

The target area for image capture was 250 m × 300 m, with a flight 
altitude of 120 m and 90 % overlap. Approximately 280 images were 
collected per flight, and orthoimages were generated using Pix4D 
Mapper (PIX4D, Switzerland). Eight Ground Control Points (GCPs), 

Fig. 1. Research flowchart.
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measured using Trimble R8s (Trimble Inc., USA), were used to create 
orthoimages and LST maps.

Temperature and relative humidity were measured in the field using 
a HOBO U23 data logger (Onset Computer Corporation, USA), with a 
temperature accuracy of ±0.21 ◦C. This data logger provided reliable 
and accurate measurements, complementing the aerial thermal imagery 
to ensure a comprehensive dataset for thermal environment analysis. 
Weather measurements, including temperature, humidity, wind direc
tion, and wind speed, were taken at the midpoint of Alley 2 (Daejong-ro 
92), located centrally among the three alleys. This location was suitable 
for collecting representative weather data for the entire study area and 

served as a basis for thermal environment analysis.
To improve the accuracy of the thermal infrared data, the apparent 

LST obtained from the Zenmuse XT sensor were calibrated using field- 
measured air temperature and relative humidity. These values, 
collected during each UAV flight at a central monitoring point within the 
study area, were used to correct atmospheric transmission effects 
through FLIR Tools software. A uniform surface emissivity value of 
0.95—commonly used for urban surfaces such as asphalt, concrete, and 
building walls—was applied across the study site. LST values were cross- 
validated using a HOBO U23 data logger (Onset Computer Corporation, 
USA), which has a measurement accuracy of ±0.21 ◦C. This multi-step 
correction process ensured the reliability of the UAV-based thermal 
assessment.

2.3. Exploratory data analysis (EDA)

Exploratory Data Analysis (EDA) was conducted to understand the 
characteristics of the collected variables and to identify patterns rele
vant to LST. The key objectives were to calculate basic statistics, identify 
potential outliers, and visually explore relationships between LST and 
independent variables. Independent variables included shadow ratio, 
alley width, building height (left/right), building type (left/right), and 
distance from the river. For each variable, descriptive statistics such as 
mean, minimum, maximum, and standard deviation were calculated to 
assess distributional characteristics. Scatter plots were generated to 
visually inspect the relationship between LST and each independent 
variable. Geospatial patterns of LST and independent variables were also 
visualized using ArcGIS 10.5. In addition, multicollinearity among 
predictors was examined using the Variance Inflation Factor (VIF), and 
variables with high collinearity were flagged for further evaluation.

Fig. 2. Maps of the study area. (a) Location of Daejeon in South Korea, (b) Location of Okgye-dong within Daejeon, (c) Map of highlighting the alleys (Alley 1: 
Daejong-ro 82, Alley 2: Daejong-ro 92, Alley 3: Daejong-ro 102).

Table 1 
Specifications of the unmanned aerial vehicles (UAVs) and sensors used in this 
study.

Type Specifications Model

Inpire1 Pro with 
Zenmuse-XT

Mavic Pro with 1/2.3 
in CMOS

UAV Weight (kg) 2.9 0.734
Maximum flight time 
(m)

20 27

Maximum flight speed 
(m/s)

22 18

Sensor Image size (pixel) 640 × 512 4000 × 3000
Spectral Band Thermal 7.5–13.5 μm RGB
Scene range From − 25 ◦C to 

135 ◦C
−

Abbreviations: complementary metal-oxide semiconductor (CMOS).
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2.4. Confirmatory data analysis (CDA)

Confirmatory Data Analysis (CDA) was conducted to develop pre
dictive models for LST and to identify the key factors influencing ther
mal patterns in the study area. Eight nonlinear machine learning 
regression models—including Random Forest (RF), Gradient Boosting, 
and XGBoost—were used for this purpose. These models were selected 
for their ability to capture complex and nonlinear interactions among 
predictors, their robust predictive performance, and their capacity for 
feature importance analysis. Linear regression and other parametric 
models were excluded due to their limited ability to represent spatial 
heterogeneity and nonlinear dynamics in urban thermal environments. 
Model performance was evaluated using repeated K-fold cross- 
validation to ensure generalizability and stability across different data 
splits. Negative mean squared error (MSE) was used as the primary 
performance metrics. Optimal hyperparameters for each model were 
determined using grid search, and model residuals were assessed using 
residual plots to examine fit quality and potential bias. After selecting 
the best-performing model, feature importance scores were analyzed to 
quantify the relative influence of each variable on LST predictions. 
Additionally, one-way ANOVA was performed in the results section to 
assess statistically significant differences in LST across time periods and 
alley segments.

3. Result and discussion

3.1. Exploratory data analysis (EDA)

3.1.1. Overview
The study area was divided into three sections: Daejong-ro 82, 92, 

and 102 alleys (Fig. 3). Each alley represents a distinct subregion within 
the study area where data were collected and analyzed. The area was 
divided into these subregions to account for potential differences in 
thermal environmental characteristics. Descriptive statistics were 
calculated, and spatial patterns were identified to understand relation
ships between variables. The data distribution was examined, and out
liers were identified. Collected data categories included shadow ratio, 
alley width, building height (left), building type (left), building height 
(right), building type (right), distance from the river, and LST measured 
at each time slot. Descriptive statistics were analyzed to calculate basic 
metrics for each variable, enabling an understanding of data distribution 
and identification of factors influencing LST in the region. To analyze 
the thermal environment, shaded areas were identified for each time slot 
using orthomosaic images generated from thermal imager captures, and 
these were verified through field surveys conducted at corresponding 
times. Alley widths, building heights, and building types were obtained 
from publicly available data and field surveys. Additionally, distance to 
the nearest natural green area along the riverside was measured to 
evaluate cooling effects.

3.1.2. Dependent variables
LST is an important variable for environmental studies; it represents 

the temperature of the ground surface and is essential data for 

Fig. 3. Photos of the study area. Images of the three alleys considered in this study, captured during the field survey.
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environmental monitoring and understanding climate change and the 
UHI phenomenon. UHI generally means temperature difference, but this 
study uses LST to analyze the heat distribution in a specific area within 
the city. LST is closely related to temperature and is an important var
iable reflecting detailed spatial changes. LST and temperature have a 
strong relationship in summer, and the two variables show similar 
patterns in spatial distribution [30]. This shows that LST is a valid in
dicator that can complement or replace temperature in UHI studies. In 
addition, LST and temperature show high agreement with each other in 
UHI evaluation [31]. Cetin et al. [32] emphasized that LST is a variable 
that can replace temperature and is useful for assessing the heat risk of a 
city. LST is highly effective for analyzing the urban heat island phe
nomenon, as it reflects detailed temperature fluctuations and enables 
more precise heat distribution analysis than temperature. It is also easily 
collectible through satellite and UAV data. through satellite and UAV 
data. Above all, it is suitable for spatial and temporal analysis, so it is 
useful for spatial decision-making.

LST is influenced by various factors. In this study, the changes in LST 
were analyzed by time-slot (09:00, 12:30, and 15:00 h) for all the three 
alleys (Daejong-ro 82, Daejong-ro 92, and Daejong-ro 102) (Table 2). 
Images were captured by cameras mounted on UAVs, and orthomosaic 
images for all alleys were constructed from these captures. The study 
area was segmented, and the mean LST value for each segment was 
calculated (Fig. 4). Segments with parked vehicles at the time of capture 
were excluded; the study area was divided at 2 m intervals. All alleys in 
the study area were paved with asphalt, eliminating the need to consider 
surface characteristic variations.

At 9:00 h, the mean LST was 29.34 ◦C across all alleys. Notable 
differences were observed among the three alleys, with Alley 2 exhib
iting the highest mean LST at 31.41 ◦C and the widest temperature range 
(24.39 ◦C–36.73 ◦C). This may be attributed to its surface characteristics 
that absorb more solar radiation or retain heat more effectively. Alleys 3 
and 1 had lower mean LSTs of 30.20 ◦C and 26.14 ◦C, respectively.

At 12:30 h, around solar noon, the mean LST increased significantly 
to 48.77 ◦C. Alley 2 again recorded the highest mean LST at 51.07 ◦C, 
ranging from 45.54 ◦C to 54.30 ◦C. Mean LSTs in Alleys 1 and 3 were 
47.54 ◦C and 47.62 ◦C, respectively, showing relatively uniform values 
likely due to the high sun angle and consistent solar exposure.

By 15:00 h, the overall mean LST remained nearly unchanged at 
48.79 ◦C. Alley 2 continued to show the highest mean LST at 51.00 ◦C 
and the widest temperature range (45.54 ◦C–54.17 ◦C). Notably, Alley 1 
(47.80 ◦C) slightly exceeded Alley 3 (47.52 ◦C) in mean LST, suggesting 
that solar heat retention may persist into the late afternoon despite the 
sun’s westward shift.

3.1.3. Independent variables
A comprehensive analysis of factors influencing LST showed that 

shadow ratio, alley width, building height and type, and distance to the 
river had significant impacts on LST in the region, despite differing 
mechanisms. For example, areas with high shadow ratios may be 
shielded from sunlight, resulting in lower LST. Wider alleys may dissi
pate heat faster than narrower ones. In addition, High-rise buildings or 
those with reinforced concrete structures tend to absorb and release 
more heat than other building types, potentially affecting LST in the 
region. Additionally, the cooling effect from water evaporation is more 
pronounced in areas near water bodies, contributing to lower LST.

Alley width plays a significant role in heat accumulation and release 
in urban microenvironments. Street shape influences wind speed and 
shadow formation, affecting thermal comfort [33]. Data indicates that 
alley widths ranged from 1.71 to 7.27 m. The mean width was 4.11 m 
and the standard deviation was 1.25 m, indicating that the width of the 
alleys varied widely. Notably, wider alleys release heat faster, while 
narrower alleys increase the likelihood of heat accumulation. As LST is 
the dependent variable in this study, Alley width was measured for each 
time slot, accounting for parked vehicles. When there were parked ve
hicles, only the alley-width that could serve as the passage for pedes
trians was considered; thus, the measured alley width varied depending 
on the time-slot.

The shadow ratio represents the proportion of an area covered by 
shadow. Shadows can be created by trees or surrounding buildings, and 
the LST under tree shade was found to be 7.1 ◦C lower on average than 
under non-shadowed areas, which was attributed to reduced radiative 
flux [34]. In this study, the shadow ratio ranged from 0 (no shadow) to 1 
(fully shadowed area) (Fig. 5). The mean value of the shadow ratio was 
0.34, indicating that the measurements were conducted when about 30 
% of the area was in the shadow (on average). Higher shadow ratios 
corresponded to lower LST. This is because shadows shield the area from 
sunlight and reduce heat accumulation. The shaded area was measured 
by constructing orthomosaic images for each time-slot, using the images 
collected from a UAV mounted with a thermal imager. These shaded 
area values were verified through field surveys conducted 
simultaneously.

Distance from the river was crucial for assessing the cooling effect of 
the water body. The large river has cooling and humidifying effects 
during the daytime, and the temperature decrease was up to 3.55 ◦C, and 
the distance of influence from the river was 1,741 m [35,36]. The 
thermal comfort effects of rivers have been studied quite extensively 
from a macroscopic perspective. To be specific, we considered the dis
tance from the area designated as a natural space; the data indicated that 
the minimum and maximum distances were 2 and 130 m, with the mean 
distance being 63.78 m and the standard deviation being 36.39 m. The 
areas located close to the river exhibited a cooling effect; thus, the LSTs 
in these areas were likely to be lower. This may be because riparian 
green spaces absorb solar radiation and the evaporation of water bodies 
causes a cooling effect in the surrounding regions. Distance was 
measured from the edge of the natural green space to the center of each 
segment.

Building height is a key variable influencing LST in urban regions 
due to its direct relation to shadow formation. The building height not 
only reflects the human living environment but also influences the urban 
thermal environment [37]. In the study area, the minimum, maximum, 
and mean building heights (left) were 0, 14.2, and 6.04 m, respectively; 
the standard deviation was 3.93 m. For the right side, the minimum, 
maximum, and mean building heights were 0, 11.9, and 4.79 m; the 
standard deviation was 3.76 m. In general, tall buildings cast larger 
shadows and lower the ambient temperature or LST of the surrounding 
area. In addition, the height of the building can influence the direction 
and speed of wind.

With respect to building type, we noted a similar effect compared to 
that of building height. dark-colored building materials exhibited higher 
LST due to their low albedo or emissivity [38]. Regarding building 
materials, glass was observed to have the lowest LST, followed by bright- 

Table 2 
Descriptive statistics of LST for each time-slot and alley.

Class 09:00 h 12:30 h 15:00 h

Mean Min Max STD Mean Min Max STD Mean Min Max STD

Alley 1 (Daejong-ro 82) 26.14 20.12 30.66 2.68 47.54 42.52 49.88 1.87 47.80 43.74 50.73 1.85
Alley 2 (Daejong-ro 92) 31.41 24.39 36.73 2.57 51.07 45.54 54.30 1.60 51.00 45.54 54.17 1.98
Alley 3 (Daejong-ro 102) 30.20 21.80 34.82 2.57 47.62 43.52 50.78 1.96 47.52 42.52 49.88 1.60
ALL 29.34 20.12 36.73 3.43 48.77 42.52 54.30 2.46 48.79 42.52 54.17 2.41
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colored building materials. On the other hand, dark-colored building 
materials, such as steel or black bricks, were observed to have the 
highest LST [39]. In this study, the building types on the right and left 
sides were divided; when a building was present, the building types were 
classified into reinforced concrete, general steel, block, and brick 
structures. For open spaces without buildings, the space was categorized 
as impervious or pervious surfaces. The impact on LST varied depending 
on the building type. For example, an alley adjacent to a green space 
may have a cooling effect. Publicly available data was used for obtaining 
the building-related data, and the reliability of the data was verified 
through field surveys. In segments where buildings were present, the 
values were set based on the measured height, and in segments with no 
adjacent buildings, the building height was set to 0. Details are provided 
in Table 3.

3.1.4. Statistical overview and bivariate correlation analysis
Descriptive statistics of the independent variables used in this study 

are summarized in Table 4. Alley width ranged from 1.71 m to 7.27 m, 

Fig. 4. LST distribution at three time slots. The top row displays thermal infrared images of the study area captured by UAV, while the bottom row shows RGB 
orthophotos overlaid with average LST values divided by sections in each alley (Alley 1, Alley 2, Alley 3). The color gradient represents the temperature range from 
low (yellow) to high (red), as indicated in the legend. (a) 09:00 h, (b) 12:30 h, (c) 15:00 h. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 5. Shade areas in the study region. Example the areas in shade, with respect to the segment (a) and building type and height (b).

Table 3 
Number of buildings by type.

Type Left side Right side

Building Brick structure 92 89
Block structure 7 13
General steel structure 8 −

Reinforced concrete structure 37 24

Open space Impervious surface 39 58
Pervious surface 5 4
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with a mean of 4.11 m, indicating notable variability across the study 
area. Shadow ratio values ranged from 0 to 1.0, with an average of 0.34, 
suggesting that roughly one-third of the surface area was typically 
shaded during data collection. Building heights and distances from the 
river also exhibited considerable variation, reflecting diverse microcli
matic conditions within the study segments.

To explore the linear relationships between LST and individual in
dependent variables, Pearson correlation coefficients were calculated 
for each time slot (09:00, 12:30, and 15:00). Fig. 6 presents a heatmap 
summarizing the strength and direction of these correlations. Among the 
predictors, alley width exhibited the strongest negative correlation with 
LST during the morning (r = − 0.51 at 09:00), suggesting that narrower 
alleys may contribute to greater heat accumulation in early hours. In 
contrast, shadow ratio showed its most negative correlation in the af
ternoon (r = − 0.50 at 15:00), implying that shading becomes increas
ingly important as solar radiation intensifies. Distance from the river 
showed weak and inconsistent correlations, with a weak negative rela
tionship in the morning (r = − 0.16) and midday (r = − 0.15), but a slight 
positive relationship in the afternoon (r = 0.13). Building heights 
exhibited minimal correlation across time slots, indicating that their 
effect may be more context-dependent or nonlinear.

In addition to correlation analysis, variance inflation factor (VIF) was 
calculated to assess potential multicollinearity among the continuous 
independent variables. Across all time slots, VIF values were well below 
the conventional threshold of 5, with most ranging from 1.1 to 1.7. 
These results indicate that the variables used in this study are statisti
cally independent and that multicollinearity does not pose a concern in 
subsequent regression or machine learning models.

Building type variables (BtypeL and BtypeR), being categorical, were 
excluded from both the correlation and VIF analyses. However, they 
were incorporated into the machine learning models using appropriate 
categorical encoding techniques to ensure their influence on LST was 
adequately considered.

3.2. Confirmatory data analysis (CDA)

3.2.1. Overview of confirmatory data analysis (CDA)
In this study, eight nonlinear regression models were employed to 

predict land surface temperature (LST) and compare their predictive 
performance: Decision Tree, Extra Trees, AdaBoost, XGBoost, LightGBM, 
CatBoost, Random Forest, and Gradient Boosting. The analysis was 
conducted across three time slots (09:00, 12:30, and 15:00 h) to account 
for temporal variations in surface heating. Model performance was 
evaluated using repeated cross-validation, and the primary metric was 
negative mean squared error (MSE), which provides a reliable indicator 
of model accuracy by penalizing larger errors more heavily. Optimal 
hyperparameters for each model were identified using grid search, 
which exhaustively evaluates combinations of parameters to determine 
the best configuration. After selecting the best-performing model for 
each time slot, feature importance analysis was conducted to identify the 
key predictors influencing LST.

The eight models were selected based on their suitability for 
handling nonlinear relationships, high-dimensional data, and multi
collinearity—common characteristics of environmental datasets 
(Table 5). Ensemble tree-based models such as RandomForestRegressor, 
XGBRegressor, LGBMRegressor, and CatBoostRegressor are widely used 
in environmental modeling due to their strong predictive performance, 
ability to model complex feature interactions, and interpretability. 
DecisionTreeRegressor was included as a baseline model for compari
son. AdaBoost and GradientBoosting were chosen for their effectiveness 
on small to medium-sized tabular datasets. Deep learning approaches 
such as artificial neural networks (ANNs) were excluded due to the 
relatively small dataset size and the study’s emphasis on interpretability 
and feature attribution in the context of urban planning.

DecisionTreeRegressor is a decision tree-based model that divides 
data into a tree structure for predictions. Each tree node splits data based 
on specific criteria, with the final prediction calculated at the terminal 
node. Decision tree predictions are made by splitting data at each node 
and returning the average or median at the terminal node. The predic

Table 4 
Descriptive statistics of independent variables.

Independent variables Mean Standard Deviation Min First Quartile Second Quartile Third Quartile Max

Shadow ratio 0.34 0.37 0 0 0.2 0.62 1
Alley width (m) 4.11 1.25 1.71 3.23 3.95 5.18 7.27
Building height (left) (m) 6.04 3.93 0 0 7.4 7.5 14.2
Building height (right) (m) 4.79 3.76 0 0 4.84 7.9 11.9
Distance from the river (m) 63.78 36.39 2 32 64 94.5 130
Building type – – – – – – –

Fig. 6. Pearson correlation between LST and independent variables for each time (09:00, 12:30, 15:00).
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tion formula is as follows, and it is the average for the leaf node to which 
x belongs. 

f(x) =
1
n
∑T

t=1
yi 

This model is easy to handle nonlinear relationships and allows for 
visual interpretation of data patterns, making it useful for understanding 
the relationship between LST and physical variables [40].

ExtraTreesRegressor and RandomForestRegressor use ensemble 
learning to combine multiple decision trees. Each tree is trained using 
randomly sampled data and variables, which prevents overfitting and 
improves generalization performance. Predictions of ExtraTrees and 
RandomForest models are determined by averaging individual tree 
predictions, as follows: 

f(x) =
1
T
∑T

t=1
ft(x)

where T is the number of trees and ft(x) is the prediction from each 
tree. ExtraTreesRegressor adds more randomness so that the trees learn 
independently, and RandomForestRegressor shows strength in handling 
complex interactions between various variables [41,42].

AdaBoostRegressor uses a boosting technique that combines multiple 
weak learners to achieve strong prediction performance. This model 
improves performance by giving more weight to the prediction errors of 
each learner. The AdaBoost prediction formula is: 

f(x) =
∑M

m=1
amhm(x)

Here, hm(x) is the predicted value of each weak learner, and αm is the 
weight of the corresponding learner. This effectively handles the in
teractions between various variables, which is advantageous in 
improving prediction performance [43].

GradientBoostingRegressor improves performance through incre
mental learning, adding new learners to reduce previous errors [44]. 
The model reduces residuals in the following way: 

Fm+1(x) = Fm(x)+ γmhm(x)

Here, Fm(x) is the previous prediction, hm(x) is the new weak learner, 
and γm is the learning rate.

XGBRegressor and LGBMRegressor are Gradient Boosting extensions 
optimized for high performance on large datasets through efficient 
computation. XGBRegressor controls model complexity using the 
following regularized objective function: 

F(x) =
∑T

t=1
(
∑n

i=1
∇L(yi, f(xi) )+ λ‖θt‖

2 

Here, ∇L is the gradient of the loss function, θt is the model 
parameter, and λ is the regularization term. LGBMRegressor is suitable 
for large-scale data due to its excellent memory efficiency and learning 
speed [45,46].

Finally, CatBoostRegressor is a boosting model that automatically 
processes categorical variables, reducing preprocessing time and 
improving predictive performance. CatBoost’s prediction is expressed as 
follows: 

F(x) = Fm(x)+ ηm

∑n

i=1
γihi(x)

Here, ηm is the learning rate, and hi(x) represents the contribution of 
the learner added at each iteration. This model can produce advanta
geous results, especially in studies that include a lot of categorical data 
[47].

3.2.2. Model evaluation
The predictive performance of each model was evaluated by splitting 

the dataset into training and test sets. The training set was used for 
model fitting, and the test set was used to assess generalization. To 
ensure reliable performance estimates, we employed the RepeatedKFold 
cross-validation method, which repeats K-fold cross-validation with 
multiple random splits. This approach mitigates the influence of any 
specific data partition, providing a more stable and generalized 
evaluation.

Prior to model training, one-way analysis of variance (ANOVA) was 
conducted to statistically assess differences in LST across time slots and 
alley segments. The results showed significant variation in mean LST 
among time slots (F = 2995.27, p < 0.0001), confirming diurnal vari
ation in surface temperature. Significant differences were also observed 
across alley segments at each time (09:00: F = 70.52, p < 0.0001; 12:30: 
F = 77.15, p < 0.0001; 15:00: F = 66.90, p < 0.0001), indicating that 
local spatial characteristics played a key role in shaping thermal pat
terns. These findings justify modeling each time slot separately and 
highlight the need to account for both temporal and spatial dynamics in 
urban heat analysis.

After identifying the optimal model for each time slot, feature 
importance scores were used to assess the relative influence of each 
independent variable on LST predictions. Feature importance quantifies 
each variable’s contribution to the model’s output, offering insights into 
the key drivers of urban heat distribution.

Residual analysis was performed to assess the goodness of fit of the 
models. Residuals, defined as the differences between observed and 
predicted values, help evaluate how effectively a model captures the 
underlying data patterns.

Three key diagnostic tests were applied: 

• Shapiro–Wilk test was used to assess normality. A low p-value indi
cated that residuals deviated from a normal distribution, suggesting 
that model assumptions were not met.

• Levene’s test evaluated the homogeneity of variances. A low p-value 
suggested unequal residual variance, potentially undermining model 
reliability.

Table 5 
List of predictive models and hyperparameters used for grid search.

Model Hyperparameters Values

DecisionTreeRegressor max_depth [3, 5, 10, 15, 20]

ExtraTreesRegressor n_estimators [50, 100, 150, 200, 300]
max_features [’auto’, ’sqrt’, ’log2′]

RandomForestRegressor n_estimators [50, 100, 150, 200, 300]
max_features [’auto’, ’sqrt’, ’log2′]
max_depth [3, 5, 10, 15, 20]

AdaBoostRegressor n_estimators [50, 100, 150, 200]
learning_rate [0.01, 0.05, 0.1, 0.5, 1]

GradientBoostingRegressor n_estimators [50, 100, 150, 200, 300]
learning_rate [0.01, 0.05, 0.1, 0.15, 0.2]
max_depth [3, 5, 10, 15, 20]

XGBRegressor n_estimators [50, 100, 150, 200]
learning_rate [0.01, 0.05, 0.1, 0.15, 0.2]

LGBMRegressor n_estimators [50, 100, 150, 200]
learning_rate [0.01, 0.05, 0.1, 0.15, 0.2]

CatBoostRegressor n_estimators [50, 100, 150, 200]
learning_rate [0.01, 0.05, 0.1, 0.15, 0.2]
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• Durbin–Watson test checked for autocorrelation. A statistic close to 2 
indicated minimal autocorrelation, while significant deviations 
implied temporal dependencies in the residuals.

Several factors may explain discrepancies between model pre
dictions and actual observations: 

1. Data limitations: While UAV-based imagery provided high spatial 
resolution, the study lacked detailed meteorological data (e.g., hu
midity, wind speed), which are critical to explaining heat distribu
tion. This limited the model’s ability to fully capture environmental 
variation.

2. Model complexity and overfitting: Despite hyperparameter tuning 
via grid search, some models may have overfit the training data, 
reducing their generalizability. Differences between cross-validation 
performance and test results indicate that the models may have been 
overly tailored to specific training patterns.

3. Spatiotemporal variability: Microscale weather fluctuations—such 
as cloud cover and wind changes—were not captured in the model. 
High-resolution data can introduce noise, and the lack of corre
sponding temporal meteorological data limits predictive accuracy. 
Incorporating finer-scale environmental inputs is expected to 
improve future model performance.

3.2.3. Results of model performance evaluation
Table 6 summarizes the performance of all models for each time slot 

based on negative MSE. Model performance was derived through cross- 
validation; closer negative MSE values to 0 indicate better performance. 
For the 9:00 and 15:00 h time slots, the CatBoostRegressor model 
recorded the lowest MSE, making it the optimal model. At 12:30 h, the 
RandomForestRegressor model demonstrated optimal performance. The 
CatBoostRegressor model markedly outperformed other models, espe
cially at 15:00 h, with an MSE of − 1.8861.

The superior performance of CatBoostRegressor, particularly in the 
morning and afternoon time slots, may be attributed to its robustness in 
handling categorical variables and its use of ordered boosting, which 
helps prevent overfitting in relatively small datasets. Its ability to cap
ture subtle nonlinear interactions between spatial variables (e.g., 
shadow ratio, building height) and LST may also contribute to improved 
prediction accuracy under complex urban conditions. Meanwhile, 
RandomForestRegressor showed strong performance at midday, 
possibly due to its ensemble structure and insensitivity to noise, which is 
beneficial when temporal variability is lower but microclimatic het
erogeneity persists.

The optimal hyperparameters for CatBoostRegressor at 9:00 h were 
learning_rate = 0.05 and n_estimators = 200. The optimal hyper
parameters of the CatBoostRegressor model for the time-slot of 15:00 h 
were: learning_rate = 0.15 and n_estimators = 200. The results indicated 
significant changes in optimal hyperparameters within the same model, 
depending on the time slot. The optimal hyperparameters of Random
ForestRegressor for the time-slot of 12:30 h were: max_depth = 10, 

max_features = log2, and n_estimators = 300. ExtraTreesRegressor and 
LGBMRegressor also demonstrated high and stable performance across 
time slots. DecisionTreeRegressor, being a relatively simple model, 
showed lower performance across all time slots. AdaBoostRegressor and 
GradientBoostingRegressor showed lower performance at certain time 
slots, despite utilizing boosting techniques.

Table 7 shows that the effects of independent variables on LST vary 
significantly by time slot, primarily due to diurnal shifts in solar radia
tion, surface heat flux, and urban microclimatic dynamics.

In comparing the three alley segments, Alley 1 consistently exhibited 
higher LST values across time slots. This can be attributed to its narrow 
street width, minimal vegetation, and relatively high building density, 
which restrict airflow and promote heat accumulation. Conversely, 
Alley 2 displayed relatively lower LST values, likely due to its adjacency 
to the river, which enhances evaporative cooling, and the presence of 
more pervious surfaces and shaded areas. Alley 3 showed intermediate 
characteristics, with moderate shadow coverage but a higher proportion 
of impervious surfaces, suggesting a transitional thermal behavior be
tween the two extremes.

Alley width was consistently the most influential factor across all 
time slots, with the highest average importance (22.10 %). Narrower 
alleys are more enclosed, restricting airflow and increasing multiple 
reflections of solar radiation between walls. In the morning, when 
convective mixing is limited and residual heat from previous night’s still 
lingers, heat accumulation in narrow spaces is intensified. At midday, 
when solar altitude increases, wide alleys receive more direct exposure, 
while narrow alleys trap both vertical and oblique radiation, sustaining 
higher LST.

Shadow ratio became most important in the afternoon (15:00 h, 
22.06 %) when solar irradiance reaches its peak and direct shortwave 
radiation dominates. In this time slot, shading plays a critical role in 
blocking solar gain, especially on hard urban surfaces with low albedo 
and high thermal mass. The longer shadows cast by buildings during this 
period can significantly reduce localized LST. In contrast, in the morning 
and around noon, when diffuse radiation is more prevalent and solar 
incidence angles are lower, the shading effect is less pronounced, lead
ing to lower importance scores.

Distance from the river maintained relatively high importance 
throughout the day, especially in the morning (19.63 %) and afternoon 
(18.07 %). This pattern reflects the cooling function of nearby water 
bodies via evaporative cooling and convective exchange, which are 
more effective during times of atmospheric instability or higher hu
midity contrast. In the early morning, air masses near water retain 
coolness accumulated overnight, lowering ambient LST. In the after
noon, river-induced breezes and localized moisture can mitigate heat 
stress in nearby alleys.

Building height (HeightL, HeightR) showed time-varying impor
tance, with stronger effects at 9:00 AM and 3:00 PM. In the morning, 
taller buildings can block oblique sunlight and reduce direct radiation 
on surfaces. In the afternoon, tall structures generate long shadows that 
extend across alleys, increasing shading and altering surface energy 
balance. Additionally, buildings’ thermal mass contributes to delayed 
heat release, affecting ambient LST differently depending on the time of 
day.

Building type (BtypeL, BtypeR) had lower importance overall, but 
showed slight fluctuations depending on time slot. This may reflect 
differences in thermal inertia, reflectivity, or façade orientation across 
structural types, affecting how they store and emit heat under changing 
radiation angles.

In addition to these temporal effects, the spatial variation in LST 
across alleys also reflects physical differences in the urban form and land 
cover. Alley segments with higher building density and fewer vegetated 
areas tended to trap more heat due to limited ventilation, accumulated 
radiation, and reduced evaporative cooling. The presence of impervious 
surfaces such as asphalt and concrete also played a role in increasing 
LST, particularly in locations with low shading and low albedo. 

Table 6 
Summary of model performance results by time-slot.

Model Mean CV Score (neg_MSE)

9:00 h 12:30 h 15:00 h

DecisionTreeRegressor − 3.8703 − 3.7349 − 4.9392
ExtraTreesRegressor − 2.8281 − 2.2577 − 1.9238
AdaBoostRegressor − 3.3227 − 2.7471 − 3.7848
XGBRegressor − 3.0845 − 2.7294 − 2.1099
LGBMRegressor − 2.7612 − 2.4676 − 2.2792
CatBoostRegressor ¡2.6215 − 2.3940 ¡1.8861
RandomForestRegressor − 2.7632 ¡2.2454 − 2.5667
GradientBoostingRegressor − 3.0574 − 2.7884 − 2.1567

Abbreviations: Coefficient of variance (CV); Negative mean squared error 
(neg_MSE).
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Although material-specific emissivity or reflectance values were not 
directly measured, the building type and surface context provided 
reasonable proxies for thermal inertia and heat storage. These findings 
highlight the temporally dynamic nature of urban thermal vulnerability. 
Effective urban heat mitigation strategies should account not only for 
static spatial configuration but also for time-sensitive interactions be
tween solar geometry, material properties, and airflow.

This shift in variable importance across time slots can be attributed 
to daily changes in solar geometry and heat transfer dynamics. In the 
morning (09:00), lower sun angles limit direct solar penetration into 
narrow alleys, making factors like alley width more influential due to 
reduced sky view and restricted ventilation. Narrower alleys tend to trap 
residual heat from the night and allow less convective dispersion. In 
contrast, by the afternoon (15:00), solar irradiance is more direct and 
intense, and the availability of shade becomes a more decisive factor in 
surface cooling. As a result, shadow ratio becomes increasingly impor
tant in mitigating thermal exposure during peak heating hours. These 
patterns underscore the need for diurnally adaptive strategies in urban 
heat mitigation.

In addition to individual variable effects, the potential interaction 
between spatial features may further amplify thermal exposure. For 
instance, narrow alleys with limited ventilation already retain heat, and 
when combined with low shadow ratios, the absence of shade leads to 
intensified solar absorption on impervious surfaces. This combination 
creates a synergistic effect that can drive LST higher than either condi
tion alone. While this study did not explicitly model interaction effects 
(e.g., through SHAP interaction values or partial dependence plots), the 
observed distribution of LST across alleys suggests that these com
pounded conditions contribute to extreme thermal environments. 
Future research should aim to quantitatively capture these interaction 
effects to support more integrated and location-specific mitigation 
strategies.

3.2.4. Measurements of temperature, relative humidity, and wind direction 
and speed

At 9:00 h, the temperature was 25.72 ◦C, with a relative humidity of 
63.05 %. By 12:30 h, the temperature had increased to 31.15 ◦C, while 
relative humidity had decreased to 42.43 %. At 15:00 h, the temperature 
and relative humidity further increased to 31.64 ◦C and 43.86 %, 
respectively, showing a typical diurnal pattern.

Analysis of wind direction and speed at 09:00 h revealed a dominant 
southerly wind. The south-southeasterly wind had a high speed of 4–5 
m/s, while the southeasterly wind was relatively weak at 1–2 m/s. At 
12:30 h, the wind direction shifted to the northwest, with a slight 
decrease in speed to 2–3 m/s. At 15:00 h, southwesterly winds were 
dominant, with a speed of 1–2 m/s, only slightly lower than the morning 
wind speed.

The southerly wind dominance at 09:00 h may be due to local air 
flows, such as orographic or valley winds, from mountains to the 
southeast of the study region. The wind direction at 12:30 h may be 
related to atmospheric convection from daytime ground heating. The 
wind direction and speed at 15:00 h may result from reduced 

atmospheric convection activity, causing decreased wind speed. Table 8
presents the detailed information of the measured temperature, relative 
humidity, and wind direction and speed for each time-slot.

The results indicated that while variables influencing the urban 
thermal environment varied by time slot, the most important variables 
on average were alley width, distance from the river, and shadow ratio. 
river, and shadow ratio. The high importance values of these variables 
suggest a possible influence of weather conditions. For instance, alley 
width was important in the morning, while shadow ratio gained 
importance in the afternoon. These results reflect the impact of solar 
altitude changes and corresponding shadow patterns; the trends in 
weather conditions and differences in the impact of variables on LST 
across time slots were compared with measured data for temperature, 
relative humidity, and wind direction and speed. However, limitations 
in measuring wind direction and speed at a microenvironment scale 
directly impact the thermal environment. Measurement equipment was 
placed at the study area’s center, and measurements were conducted at 
each time slot, with results plotted into graphs. At 9:00 h, the south and 
southeasterly winds were strong, indicating a significant impact from 
the weather. Distance from the river’ was important due to the similarity 
in alley and wind direction and high humidity, which increased its in
fluence on LST. At 12:30 and 15:00 h, the wind direction was northerly 
and southerly, respectively, intersecting with the direction of the alley; 
therefore, the variable had relatively little influence on the LST during 
these time slots. Wind speed at 15:00 h was variable, while at 12:30 h it 
was relatively gentle, potentially affecting feature importance results. 
For instance, large portions of the alleys were shaded at 15:00 h, making 
shadow ratio the most important feature in this time slot. Since alley 
width correlated with wind direction, its influence was high in certain 
time slots.

3.2.5. Analysis of residuals
Table 9 presents a summary of the results of the analysis of residuals 

conducted in this study, with respect to each time slot.
Fig. 7 shows the residual analysis results. The Shapiro–Wilk test was 

used for testing the normality of residuals. A low p-value indicated that 
the residuals did not meet the normality condition. Data measured at 
09:00 and 12:30 h had very low p-values, indicating non-normal re
siduals. The data measured at 15:00 h depicted a p-value of 0.5880, 
indicating that the residuals met the condition of normality.

Levene’s test was used to assess variance equality. A low p-value 
indicated non-homogeneous residual variance. In this study, the p- 
values for all the measurements for all time slots were low, indicating 
that the variances of the residuals were not homogeneous. The Durbin- 
Watson test was used to assess autocorrelation in the residuals. A value 
closer to 2 suggests a lower probability of autocorrelation in the re
siduals. For the data measured at 09:00 and 12:30 h, the Durbin-Watson 
values were 1.1304 and 0.9854, respectively, indicating the possibility 
of autocorrelation in the residuals. For the data measured at 15:00 h, the 
Durbin-Watson value was 2.0842, indicating almost zero autocorrela
tion in the residuals.

Residual analysis showed that at 15:00 h, residuals were normally 

Table 7 
Feature importance by time-slot (circled numbers represent the importance ranks).

Feature Importance

09:00 h 
(CatBoostR.) 
(unit: %)

12:30 h 
(RandomForestR.) (unit: %)

15:00 h(CatBoostR.)  
(unit: %)

Average Importance (unit: %)

Width ①① 28.43 ①① 27.83 ⑥ 10.04 ①① 22.10
shadowRatio ④ 10.97 ②② 17.26 ①① 22.06 ③③ 16.76
distanceRiver ③③ 19.63 ③③ 16.72 ②② 18.07 ②② 18.14
heightR ②② 22.68 ④ 14.57 ⑤ 12.07 ④ 16.44
heightL ⑤ 9.68 ⑤ 8.13 ③③ 18.02 ⑤ 11.94
BtypeL ⑦ 1.23 ⑦ 3.31 ⑦ 2.97 ⑦ 2.50
BtypeR ⑥ 5.13 ⑥ 5.55 ④ 12.94 ⑥ 7.87
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distributed with almost no autocorrelation; however, residual variances 
were not homogeneous across time slots. This indicated that the model 
depicted a relatively high predictive performance at a specific time slot; 
however, the condition of equality of variances was not met. These re
sults indicate that unequal variances may impact the reliability of model 
predictions.

Moreover, the presence of non-normal and autocorrelated resi
duals—particularly at 09:00 and 12:30 h—may reduce the reliability of 
prediction intervals and limit the generalizability of the model to new 
data. Autocorrelation implies that errors are not independent, suggest
ing the model may be systematically under- or over-estimating for spe
cific clusters of data. This could result in biased uncertainty estimates or 
overlooked localized effects. To improve model robustness, future 
studies could incorporate temporal or spatial features explicitly, or 
apply models such as GWR or time-aware neural networks that are 
designed to handle such dependencies.

Notably, residuals at 9:00 and 12:30 h were non-normally distrib
uted with a high likelihood of autocorrelation. This suggests that for 
these time slots, model predictions may follow a constant pattern, 
potentially missing specific data patterns. For data measured at 15:00 h, 
autocorrelation was almost zero, and residuals were normally distrib
uted; however, residual variance remained non-homogeneous. Never
theless, even at 15:00 h, where residuals were normally distributed, the 
lack of variance homogeneity suggests that localized anomalies may still 
be underrepresented. To address this, improving data accuracy through 
feature engineering is essential. Feature engineering improves predic
tive performance by transforming existing data or creating new vari
ables. Furthermore, collecting additional data for detailed time-series 
analysis could improve accuracy with neural network models such as 
RNN or LSTM.

4. Conclusion

This study analyzed land surface temperature (LST) in three urban 
alleys located in a residential area of Gao Bridge, Okgye-dong, Jung-gu, 
Daejeon, South Korea. Measurements were taken at three time slots 
(09:00, 12:30, and 15:00 h), and nonlinear regression models were used 
to identify key factors influencing LST. The results revealed that the 
relative importance of variables varied by time of day. On average, alley 
width, distance from the river, and shadow ratio were consistently 
important. Specifically, alley width had greater influence in the morn
ing, while shadow ratio became more dominant in the afternoon. These 
differences are likely due to diurnal changes in solar altitude and 
shading patterns.

Residual analysis showed that in some time slots, the residuals did 
not follow a normal distribution and exhibited autocorrelation, sug
gesting unresolved temporal dependencies in thermal responses. These 
findings imply that certain influential variables may have been omitted 
or insufficiently modeled, and that spatial and temporal autocorrela
tions were not fully accounted for. Violations of normality and homo
scedasticity assumptions could affect the reliability of prediction 
intervals, while autocorrelation in residuals indicates that localized or 
sequential thermal patterns were inadequately captured.

One potential cause is the absence of key meteorological or temporal 
variables, such as solar radiation, wind direction, or lagged temperature 
values. Incorporating these factors may help capture sequential heat 
dynamics and reduce residual autocorrelation. Additionally, applying 
variance-stabilizing transformations (e.g., logarithmic scaling) or 
adopting models robust to heteroscedasticity (e.g., quantile regression) 
may improve model reliability. Future studies should explore these en
hancements to improve predictive accuracy and better address spatio
temporal dependencies in urban thermal environments.

To enhance the robustness of future predictive models, several im
provements can be considered. These include the incorporation of 
additional meteorological and temporal variables, application of data 
transformation techniques to normalize residuals, and adoption of 
spatially explicit modeling approaches such as Geographically Weighted 
Regression (GWR) or spatio-temporal ensemble methods.

One major limitation of this study is the absence of meteorological 
variables—such as wind direction, wind speed, and cloud cover—which 
are essential for capturing transient thermal dynamics but are difficult to 
collect at microscale resolution. These omitted factors likely reduced the 
model’s ability to explain certain residual patterns. For example, solar 
radiation and cloud cover directly affect surface heating, while wind 

Table 8 
Depiction of measured temperature, relative humidity, and wind direction and speed by time-slot.

09:00 h 12:30 h 15:00 h

Temperature: 25.72 ◦C 
Relative humidity: 63.05 %

Temperature: 31.15 ◦C 
Relative humidity: 42.43 %

Temperature: 31.64 ◦C 
Relative humidity: 43.86 %

Table 9 
Results of the analysis of residuals for each time slot.

Feature 09:00 h 
(CatBoostR.)

12:30 h 
(RandomForestR.)

3:00 h 
(CatBoostR.)

Shapiro–Wilk Test (W) 0.9715 0.9414 0.9936
Shapiro–Wilk Test (p-value) 0.0007 6.2346e− 07 0.5880
Levene’s Test (p-value) 1.7118e− 28 6.9304e− 33 1.3018e− 43
Durbin-Watson Test 1.1304 0.9854 2.0842

J. Gu et al.                                                                                                                                                                                                                                       City and Environment Interactions 27 (2025) 100214 

12 



dynamics influence convective cooling within narrow urban alleys. 
Without these variables, the model may have overemphasized spatial 
predictors and underestimated atmospheric influences. This limitation 
likely contributed to the presence of non-normal or autocorrelated re
siduals in specific time slots.

To overcome this, future research should consider deploying 
compact, localized meteorological sensors (e.g., portable weather sta
tions, IoT-based loggers) across multiple alley segments. These in
struments would enable continuous measurement of key parameters 
such as wind, humidity, and cloud cover, improving both temporal 
resolution and the calibration of thermal imagery. While GWR was 
excluded in this study due to the limited spatial scope and concerns 
about overfitting, it could be reconsidered in larger or more spatially 
heterogeneous study areas.

Furthermore, although this study identified statistical associations 
between urban features and LST, it did not fully disentangle the un
derlying physical mechanisms. For instance, the effect of shadow ratio 
may vary with building orientation, sun angle, and surface albedo, while 
river proximity may influence cooling differently depending on airflow 
and humidity levels. Future research could address this by installing 
fixed ground-based sensors to collect high-resolution meteorological 
data or by integrating localized weather forecasts to more precisely 
capture temporal dynamics.

Based on the results of this study, we recommend that urban plan
ning and design strategies explicitly incorporate the cooling effects of 

rivers, alley morphology, and shadow-generating features. The machine 
learning models consistently identified alley width, shadow ratio, and 
river proximity as the top predictors of LST variation across all time 
slots. For example, alleys narrower than 3 m were associated with 
significantly higher surface temperatures, suggesting a need to regulate 
or retrofit these urban forms to facilitate ventilation and thermal relief.

To support thermal resilience in urban regeneration areas, design 
guidelines should include: 

• Minimum alley width standards to promote airflow
• Installation of vertical shading elements (e.g., trees, awnings, 

trellises)
• Use of permeable or reflective paving materials
• Preservation and enhancement of riparian corridors for evaporative 

cooling

In older, high-density neighborhoods with limited capacity for large- 
scale redevelopment, such interventions can be applied at the micro- 
scale. Strategies may include removing obstructive street elements (e. 
g., illegally parked vehicles) to restore ventilation corridors, integrating 
small green pockets, or selecting reflective facade materials during 
building renovations. Although GWR was excluded due to spatial con
straints in this study, it may prove useful in larger urban domains with 
spatial heterogeneity.

Despite the utility of the findings, this study did not define precise 

Fig. 7. Results of residual analysis. Histograms of residuals and scatter plots of residuals versus fitted values for each time slot: (a, d) correspond to 09:00 h, (b, e) 
correspond to 12:30 h, (c, f) correspond to 15:00 h.
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threshold values (e.g., optimal alley width or shadow ratio) due to data 
limitations. Future research should incorporate simulation-based sensi
tivity analyses or parametric optimization to develop concrete, 
evidence-based design criteria. Moreover, examining interaction effects 
between variables—such as between shadow ratio and river prox
imity—may further enhance the explanatory power of LST models.

The omission of key meteorological variables (e.g., wind direction, 
humidity, solar radiation, cloud cover) is another limitation. These 
factors significantly influence microscale thermal dynamics. Future 
studies should deploy compact urban weather sensors or mobile stations 
to capture real-time data. Integration of meteorological datasets would 
also enable better calibration of UAV-based thermal imagery and 
improve model generalization.

Furthermore, expanding urban green infrastructure represents a 
promising approach for UHI mitigation. Strategically placed green 
spaces not only enhance thermal comfort but also improve air quality 
and urban livability. Prioritizing such interventions in thermally 
vulnerable neighborhoods would promote environmental equity and 
resilience.

Methodologically, this study demonstrates the value of combining 
UAV-based thermal imagery with interpretable machine learning to 
investigate fine-scale urban heat patterns. Compared to traditional 
satellite-based analyses, this approach allows for design-level insights 
tailored to microenvironments. In future work, more advanced or 
interpretable models—such as convolutional neural networks (CNNs), 
long short-term memory networks (LSTMs), or explainable AI (XAI) 
frameworks—could be employed to capture spatiotemporal dynamics 
more effectively. Combining UAV data with real-time IoT-based envi
ronmental sensors will further enhance analytical depth and support 
practical applications in urban climate adaptation.
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Glossary

ANN: Artificial neural network
CMOS: Complementary metal-oxide semiconductor
CDA: Confirmatory data analysis
CNN: Convolutional neural network
XAI: Explainable AI
EDA: Exploratory data analysis
GIS: Geographic information system
LST: Land surface temperature
LSTM: Long short-term memory
ML: Machine-learning
MODIS: Moderate resolution imaging spectroradiometer
MAUP: Modifiable areal unit problem
negative MSE: Negative mean squared error
RF: Random forest
RNN: Recurrent neural network
SUHI: Surface urban heat island
TVoE: Threshold value of efficiency
UAV: Unmanned aerial vehicle
UHI: Urban heat island
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