
An Enhanced Indoor Pedestrian Model

Supporting Spatial DBMSs

Suyeong Kwak Hyunwoo Nam Chulmin Jun

*

Dept. of Geoinformatics, University of Seoul, Seoul, Korea

{ksykk0, nhw612, cmjun}@uos.ac.kr (*: corresponding author)

ABSTRACT

Two-dimensional geographic information systems (GISs) are

mature technology and applications such as car navigation

systems are commonplace. As indoor positioning techniques are

developing, indoor 3D models are attracting increasing attention.

However, modeling and implementing indoor 3D models

applicable to real-time, client-server environments such as 2D

GIS is a challenge and no working applications have yet been

reported. As part of a multi-stage project that aims to build 3D

indoor applications running in real-time, we are currently

developing a fire evacuation system. Although not definitely

required at this stage, we used a spatial DBMS as the input data

instead of CAD files; the process of building floor plans and stairs

is shown here. In developing the simulation model, we improved

the existing ‘floor field’ model such that it can accommodate the

visibility factor. While the previous floor field model does not

capture the visibility effect, we revised the algorithm so it can

give different walking speeds to pedestrians based on the level of

visibility to the exits from where the pedestrians are located. We

show the process of building the proposed 3D model and test the

simulation system using a campus building.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS;

I.3 [Computer Graphics]: Applications

General Terms

Algorithms, Experimentation

Keywords

pedestrian simulation, cellular automata, 3D model, spatial DBMS,

fire evacuation

1. INTRODUCTION
Many variations of micro-scale pedestrian models have existed for

decades [2, 3, 14]. However, most focus on scientific experiments

and improvements rather than on relating to real-world

applications. Many studies about indoor positioning techniques

have recently appeared [12, 16, 23, 25], drawing our attention to

their potential application in areas such as indoor navigation and

fire evacuation.

In collaboration with others, we are currently working on a

government project to develop 3D indoor awareness systems. This

project includes developing 3D models, indoor positioning

techniques, 3D extensions for database management systems

(DBMSs), and applications that use these techniques. We are

focusing on developing a DBMS-based indoor fire evacuation

system. This project is composed of multiple stages, from the

development of a stand-alone simulator to a real-time evacuation

system. It is unnecessary to point out the numerous benefits of

DBMSs compared to file systems. The major anticipated

advantages are similar to those of 2D geographic information

systems (GISs). Current GISs are mature technology in terms of

providing client-server functions, as in DBMSs. For example,

navigation systems concurrently access a network database in

such a way that users think of the data as being accessed by one

user while other applications access the same data to retrieve

polygons and related information. In order to make indoor

applications real-time, server-client systems, the data must reside

in a database to which different applications can send queries and

from which they can retrieve different subsets of data. For

example, indoor navigation uses network structure and indoor

location-based services (LBSs) may need additional polygons and

topological and semantic information. While positioning sensors

use height information as well as floor plans, 3D visualization

requires more detailed data, including data about walls and

windows. The evacuation system we are working on needs to

retrieve 2D floor and stairs in plan from the database.

We are in the process of developing a stand-alone simulator and

could have used CAD-based files [5, 17]. However, as mentioned,

our aim is to make the system real-time and integrate positioning

techniques later and to be one of the applications that share the

same database. Thus, we chose to use a DBMS approach and will

briefly introduce the process to build the data, although it is not

the main topic of the paper. We will show how we used a

simplified method to build a 3D structure that can model not only

indoor rooms, but also multiple floors and stairs that can

effectively be stored in DBMSs and can be converted to input data

for the simulator. Once the data become available in the simulator,

they are used as computation for simulation as well as for

visualization in 2D or 3D.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ISA’10, 2 November 2010, San Jose, CA, USA

Copyright © 2010 ACM 978‐1‐4503‐0433‐7/10/11 ... $10.00

The current concern is improving the pedestrian algorithm.

Instead of developing a new model, we based our algorithm on an

existing model developed by Kirchner et al., which is described

later. While that model uses a fixed speed, we added a ‘visibility’

factor, considering that people having different sight lines to the

exits have a differing ability to find the exits, especially in

unfamiliar environments, resulting in different walking speeds.

Along with data processing using a spatial DBMS, we show how

to implement the visibility factor in the simulation.

2. RELATED WORK
Pedestrian models have been studied in many areas, such as

network flow, traffic assignment, and simulations [1]. These

models are generally categorized into macroscopic and

microscopic models [6]. Macroscopic models are typically used in

traffic flow optimization or way-finding approaches outdoors and

use node-link structure as the base data structure. While

macroscopic models ignore the differences of individuals and see

them as a homogeneous group to be assigned to nodes or links,

microscopic models include individual parameters (e.g.,

pedestrian movement speed, reaction speed, individual tendency),

the interaction of pedestrians with other pedestrians, and the

physical environment (e.g., walls, obstacles, smoke). Recently,

two microscopic models have attracted particular attention—the

social force model and the floor field model. A frequently cited

social force model was advanced by Helbing et al. [7, 8, 9]. It

involves mathematically calculating the forces that act on agents

to determine their movement to other destinations (e.g., exits).

Helbing’s model considers the effects of each agent on all other

agents and on the physical environment (e.g., shoulder width,

expectation speed, target spot, etc.), leading to the computation of

O(n2) complexity, which is unfavorable for computer-based

simulations with many agents [10, 11].

On the other hand, Kirchner et al. proposed a floor field model

that uses a cellular automata approach. Instead of considering all

the effects of an agent on all other objects in the space, it only

considers the local interaction of an agent with neighboring

objects and computes the movement of an agent at each time step,

choosing the next destination among adjacent cells. This makes

computer simulation much more effective. In this study, we used a

floor field model as our base model.

Kirchner’s floor field model uses two types of fields, static and

dynamic, which are numeric values the agent consults before

moving [13]. A cell in the static field indicates the shortest

distance to an exit. An agent is in a position to know the direction

to the nearest exit based on the values of nearby cells. While the

static field has fixed values computed using the physical distance,

the dynamic field stores dynamically changing values indicating

agents’ virtual traces left as they move along their paths. Without

having direct knowledge of where other agents are, it can follow

other nearby agents by consulting the dynamic values.

An agent moves to an adjacent cell in each time step after

consulting the probability assigned to entire cells, which is the

normalization of the following score. Readers are advised to refer

to the related studies [15, 18].

 (1)

, where Score(i) : the score at cell i

 : the value of the dynamic field in cell i

 : the value of the static field in cell i
kd and ks : scaling parameters governing the degree to which an agent is

sensitive to dynamic or static field respectively
ξi : 0 for forbidden cells (e.g. walls, obstacles) and 1 otherwise

ηi : 0 if an agent is on the cell, and 1 otherwise.

The scaling factors in the formula mean the degree to which an

agent is sensitive to static or dynamic fields; it is possible to

simulate different pedestrian strategies by varying these values.

For example, we can model herding behavior in panic situations

by increasing sensitivity to the dynamic field.

In this study, we revised Kirchner’s floor field model by adding a

third field, called the ‘visibility field’. The visibility field is a

layer of numerical values that indicates the degree of visibility of

a cell to the nearest exit. This is described in detail in the

following section.

3. INTRODUCING VISIBILITY INTO THE

FLOOR FIELD MODEL
The static field in the floor field model is a layer composed of the

shortest distance to an exit, which is computed before the

simulation begins and does not change during the simulation. The

static field assumes that two different locations in a room having

the same distance from the exit have the same distance value,

indicating they have an identical attraction force to the exit.

However, it is reasonable to expect that an agent blocked by an

obstacle such as furniture or a wall has less visibility and will be

in a less favorable position to find the exit than those who have

better visibility. For example, as illustrated in Figure 1, although

agent A and B are located the same distance from the exit, agent B,

who is located behind an obstacle, cannot see the exit directly.

Not only is it obvious that agent B needs to turn more corners to

reach the exit, but it is foreseeable that the agent may spend more

time to find the exit, especially if less familiar with the

environment. We introduced this visibility field into the existing

floor field model. In order for the visibility field to be

implemented, a space first needs to be divided into sub-spaces

depending on different levels of visibility. Each agent in these

sub-spaces should have different walking speeds. These are

described below.

Figure 1. Two agents having different visibility to the exit

3.1 Space partitioning based on visibility
In partitioning a space based on visibility, we employed the space

syntax theory [4]. Space syntax is a technique that has been used

to derive the connectivity of urban or architectural spaces [19].

While accessibility is generally used in transportation routes to

measure the relative nearness or easiness of movement using

distance or travel time as the cost, space syntax only considers

‘depth’ as the cost and does not consider physical distance. It

converts streets or corridors into a graph composed of visual paths

called axial lines. When measuring the depth, it counts the number

of axial lines, or turns of sight, traversed from one node to

another; the greater the depth, the less structural connectivity a

space has.

A traditional network model is defined using its graph G(V, E),

where V is the set of nodes defining places {vi | i = 1, 2, …, n} and

E is the set of edges or links connecting them {vi, vj | eij, i,j = 1, 2,

…, n}, where eij is defined as:

 (2)

Here, we can define higher-order connectivity using this unit

connectivity. We can count the number of paths traversed from

any node i to any other node j, which is defined as Sij. This index

measures the depth of one node to other nodes and is in fact the

basis of the depth in the space syntax theory. The depth Sij
z where

z is the depth of node j from i can be computed as follows:

 (3)

Then we can define the overall depth of j from i as Sij = z if Sij
z = 1.

We applied this depth-based approach to construct the visibility

field. We divided a space into sub-spaces based on the levels of

visibility depths. Figure 2 illustrates how we implemented this.

Let’s suppose we have a room with two obstacles, as shown in

Figure 2. First, the regions (①) that can be seen directly from the

exit are determined. Next, those regions (②) that can be seen

from region(s) ① are determined. Then, following the same

method, the regions (③) are determined, which can be seen from

the region(s) ②. This process continues recursively until the

entire room is covered by the sub-regions. Finally, these sub-

regions are assigned the depth values of 1, 2, or 3, indicating the

levels of visibility to the exit. Figure 3 shows how a floor of a real

building can be partitioned according to this method. It is divided

into four sub-regions.

3.2 Implementing the visibility field
Once the visibility field has been computed as described above,

the agents consult the depth values and the static and dynamic

values assigned in the cells when they move.

We implemented this by assigning different speeds according to

the depths. Figure 4 shows the revised process, which includes the

visibility field computation step. When implementing the walking

speeds, we used time ticks, which are provided in the C#

programming language. Time ticks are the waiting times until

pedestrians move to the next cell. To calculate the visibility field

using ticks, two kinds of parameters are required. The first is the

starting value of the time tick. It is usually set to 0. The second is

the increment value. The higher the value is, the longer an agent

must wait before moving. Instead of moving to another cell

simultaneously in every time step as in the previous model, an

agent has to wait for the amount of time ticks assigned according

to the visibility. Thus, those agents located in less advantageous

regions in terms of visibility to the exit take longer to escape. By

varying time ticks, we can simulate the differences between

regions.

Figure 5 shows a comparison between the floor field model and

the one with the visibility field included. It shows snapshots taken

in the same elapsed time after the start of the simulation. With

only the static field taken into account, the left figure shows a

bottleneck on both sides of the obstacle. This indicates that the

agents behind the obstacles find the way out equally quickly

Figure 3. An example of space partitioning

Figure 2. Space partitioning based on the levels of visibility

regardless of visibility once they are located the same distance

from the exit. On the other hand, the figure on the right shows

those agents located in higher depth areas move more slowly than

those in lower depth areas.

Figure 6 shows the evacuation time of a number of agents with

varying time tick increments. Increment 0 is the same as in the

existing floor field model. We carried out an experiment,

changing the number of agents (100, 200, 300, and 400). As

shown in the table, while the existing floor field model (increment

value = 0) shows little difference in evacuation time, our model

with the visibility (time ticks) shows rapidly increasing time for

evacuation as the number of agents increases. When a time tick

increment = 3, total evacuation time (810.5 seconds) is almost

four times longer than that in the existing model (205 seconds).

This indicates that the people with low visibility or connectivity

take more time, and the time rapidly increases with an increasing

number of people. By adjusting the increment, it is possible to

simulate different situations. For example, for the people who are

familiar with the given space, we can use a small increment

because the effect of visibility is low, and conversely, those

unfamiliar with the space have a high increment value.

4. IMPLEMENTING THE SIMULATOR
The implementation process was divided into two steps. First,

topologically connected building floors and stairs and attribute

data were constructed and stored in a spatial database. Then, they

were converted to grid cells to be used as input data for the

simulation. This input data could then be used as the computation

in the simulator and 3D visualization. The processes are

summarized in Figure. 7.

Building floor data in CAD format were first converted to 2D

vector layers such as shapefiles (Figures 7-(a) and (b)). Then,

polygon and line data needed for 2D and 3D visualization and

simulation were extracted and stored in a spatial DBMS.

Topologically interrelated indoor compartments, including rooms

and stairs, as well as attribute data were stored in the DBMS

(Figure 7-(c)). The necessary parts were taken from the simulator

and then converted to grid cell format for the simulation (Figure

7-(d)). Finally, the simulation was carried out using the grid cell

data. The processes can be displayed in 2D and 3D while the

computations are performed (Figure 7-(e)). The simulation results,

which consist of the number of escaped agents by time increment,

were written to a log file and stored back in the DBMS for post

analysis and later integration with real-time applications.

Figure 5. Comparing the floor field model and the one with the

visibility field included

Figure 6. The evacuation time of varying numbers of agents

with different increments

0 1 2 3

100 65.5 137.5 224.5 313.5

200 105.5 210 305.5 368

300 155 308 456 602

400 205 406 612.5 810.5

0

100

200

300

400

500

600

700

800

900

Ev
ac

u
at

io
n

 t
im

e
(s

e
c)

Increment value of the time tick

100

200

300

400

Figure 4. The simulation process including the visibility field

computation

4.1 Acquisition and storage of spatial data
For the preparation of floor plan data, instead of developing a new

format, we used the exiting shapefile format, which can be easily

obtained using the tools included in many GIS applications. We

used QuantumGIS [22] for the conversion. After the CAD files

were imported to QuantumGIS, information about things such as

walls, doors, rooms, corridors, and exits was extracted in the form

of lines and polygons and stored into shapefiles. During the

process, we also needed to assign proper coordinates for

conversion to grid cell data later. Extracted 2D layers were stored

in a spatial DBMS in table form. In this study, we used

PostgreSQL/PostGIS for the DBMS [20]. Space elements such as

corridors, rooms, walls, doors, and openings (exits) were stored in

corresponding tables. Attribute data such as building floor

numbers, room numbers, and room uses were also stored in the

DBMS.

In addition, stairs were constructed and stored separately in a table

because they were not in plane form (as are building floors) and

cannot be converted directly from CAD files using tools. As will

be described later, our evacuation simulation requires plane data

as the base data structure. Figure 8 describes the process for the

conversion of stairs. First, stairs were divided into a connected set

of rectangles. In Figure 8, we can see a simple type of stairs is

composed of four rectangles. These stair polygons were then

stored in the DBMS. In this way, all the floors and stairs were

prepared in the form of planes that could later be converted to 2D

arrays for the simulation.

4.2 Converting to grid cells
Since we based our model on the floor field model, we needed

grid cell data as the input format. In this study, we used C#

programming language to implement the simulation system. We

used npgsql library [21], which is compatible with PostgreSQL,

for loading spatial data. Details of the data conversion process are

shown in Figure 9. First, the building data and attribute data

stored in the DBMS were loaded into the simulator. Then, the

loaded floors and the stair data were converted to bitmap formats

using SharpMap [24], shown in Figure 9-(a). The SharpMap

library provides functions to visualize spatial data fetched from

spatial DBMSs in 2D. The reason for converting to bitmap format

is that it has a raster structure that can easily be converted to grid

cells and allows us to distinguish different layers using colors. In

bitmap data, the layers of doors, rooms, hallways, and walls are

assigned different colors because color values are used in

assigning cell values. Figure 9-(d) shows that RGB values are

used to represent those layers.

Next, the coordinates of the floor and stair data were set since the

converted grid data did not contain the coordinates. In this study,

we used the top left corner of the first floor as the base coordinate.

By using this, the coordinates of other floor spaces and stairs were

relatively determined, as shown in Figure 10.

The next step was to determine the cell size and the number of

cells in each spatial element. We used 40 cm x 40 cm as the cell

size of the grid data, considering human shoulder width. By using

this size, we could derive the number of cells in each rectangular

space. Then, as described above, cell values were assigned based

on the bitmap colors (Figure 9-(d)). Through this process, the

floors and stairs in vector layers were converted to grid cell data.

We developed the simulation system such that this conversion

process can be implemented seamlessly.

Figure 8. Data construction process for stairs

Figure 7. Data construction process

4.3 Simulation and 3D visualization
We carried out evacuation simulations using the converted grid

cell data. We used the revised floor field model that uses our

proposed visibility field. Randomly created agents were first

placed in the target building and the evacuation process was run

and visualized. To visualize the building and the moving

pedestrians in 3D, we used OpenGL Library. In order to construct

the walls and the 3D shapes of stairs, we used the height stored as

attribute data in the DBMS. Stair slopes were calculated from

these coordinates and displayed in 3D.

The simulation results were stored in log files in text format. Exit

locations and ID values of pedestrians according to escape time

were stored. The total time it takes for all agents to escape could

be obtained from this information. The system allows us to choose

whether we apply the visibility field or not and to set various

parameters.

5. SYSTEM TEST
We used a campus building for our system test. Following the

processes described in the previous section, the building data in

CAD format were converted to shapefiles and then stored in a

spatial database. The system then read in the data and converted

them to grid cells. Figure 11 shows the spaces partitioned based

on visibility and Figure 12 shows a 3D snapshot during the system

run.

Figure 13 illustrates the log files containing simulation results.

From this, we could obtain the ID of a certain agent and determine

which exit that agent used for evacuation at a certain time.

‘TIMETICK’ in Figure 13 represents the time spent for the

evacuation. ‘AGENT ID’ is the agent’s id and ‘ACTION’ is

whether or not the agent escaped. ‘INIT POS’ is the initial

coordinates of the agent, and ‘EXIT POS’ is the coordinates of the

exits used for escape. We could compute the time it took for all

agents to evacuate. These log files were stored back in the DBMS.

We could use these results to analyze the building structures, for

example, to determine which parts of the building are bottlenecks

that make escape difficult. If the system is integrated with

localization sensors, which has not happened yet, the statistical

records of people in different parts of the building captured by the

sensors could then be used to refine the simulation or to help in

rescuing people during real-time emergencies.

Figure 10. Determining the base coordinate and the

coordinates of other spaces

Figure 11. Simulation shown in 2D with partitioning of the

spaces by a visibility field

Figure 9. Data construction process for grid cells

6. CONCLUDING REMARKS
In this study, we developed a 3D indoor pedestrian simulator

using a spatial DBMS. The enhancement we aimed for is twofold.

First, we developed a process to build and store 3D indoor

building spaces using a spatial DBMS. When developing the

simulator, we made it communicate seamlessly with the data in

the DBMS for the preparation of input grid cell data. Second, we

incorporated the visibility factor into the existing floor field model.

By adding visibility field, we were able to model the level of

disadvantageousness of finding the exit according to the degree of

visual depths which is calculated by on what degree the visual

paths to the exit are allowed from the given location. The results

proposed here are part of an ongoing research project that aims to

develop real-time systems. The simulation results stored in a

database could be used under real-time emergency conditions to

judge if the current population captured by sensors is abnormal

compared to the stored exit capacity and if alternative routing is

necessary.

7. ACKNOWLEDGMENTS
This research was supported by a grant (08KLSGC04) from

Cutting-edge Urban Development - Korean Land Spatialization

Research Project funded by the Ministry of Land, Transport and

Maritime Affairs and also by the Supporting Project For

Education of GIS experts.

8. REFERENCES
[1] Ahuja, R. K., Magnate, T. L., Orlin, J. B. 1993. Network

Flows, Theory, Algorithms, and Applications, Prentice Hall.

[2] Blue, V. J. and Adler, J. L., 1999. Using cellular automata

microsimulation to model pedestrian movements, In A.

Ceber (Ed.), Proceedings of the 14th International

Symposium on Transportation and Traffic Theory, Jerusalem,

Israel, 235-254.

[3] Burstedde, C., Klauck, K., Schadschneider, A., and Zittartz,

J., 2001. Simulation of pedestrian dynamics using a two-

dimensional cellular automaton. Physica A 295, 507-525.

[4] Cho, D. 1999. A Study on the Tools of Analysis in the Space

Syntax Theory, Architectural Institute of Korea, 156, 71-76.

[5] Gwynne, S., Galea, E.R., Owen, M., Lawrence, P.J.,

Filippidis, L.L. 2005. A systematic comparison of building

EXODUS predictions with experimental data from the

Stapelfeldt trials and the Milburn House evacuation, Applied

Mathematical Modeling, 29, 9(Sep.2005), 818-851.

[6] Hamacher, H. W., Tjandra, S. A. 2001. Mathematical

modeling of evacuation problems- a state of art. In M.

Schreckenberg and S. Sharma, (Eds.), Pedestrian and

Evacuation Dynamics, Springer-Verlag, Berlin, 227-266.

[7] Helbing, D., Farkas, I., Molnár, P., Vicsek, T. 2001.

Simulation of pedestrian crowds in normal and evacuation

situations. In M. Schreckenberg and S. Sharma, (Eds.),

Pedestrian and Evacuation Dynamics, Springer-Verlag,

Berlin, 21-58.

[8] Helbing, D., Farkas, I., Vicsek, T. 2000. Simulating

dynamical features of escape panic, Nature 407(Sep.2000),

487-490.

[9] Helbing, D., Molnár, P. 1997. Self-organization phenomena

in pedestrian crowds, In F. Schweitzer (ed.), Self-

Organization of Complex Structures: From Individual to

Collective Dynamics, Gordon & Beach, London, UK.

[10] Henein, C., White, T. 2005. Agent-based modeling of forces

in crowds, In P. Davidsson, B. Logan and K. Takadama

(Eds.), Multi-agent and Multi-agent-based Simulation,

Lecture Notes in Computer Science, 3415, Springer, New

York, 173–184.

[11] Henein, C., White, T. 2007. Macroscopic effects of

microscopic forces between agents in crowd models, Physica

A, 373, 694-712.

[12] Hightower, J., Boriello, G., and Want, R., 2000. SpotON: An

indoor 3D location sensing technology based on RF signal

strength. University of Washington CSE Report.

[13] Kirchner, A., and Schadschneider, A., 2002. Simulation of

evacuation processes using a bionics-inspired cellular

automaton model for pedestrian dynamics, Physica A, 312,

260-276.

[14] Klupfel, H., Konig, T., Wahle, J., and Schreckenberg, M.,

2002. Microscopic simulation of evacuation processes on

passenger ships, In Proceedings of Fourth International

Conference on Cellular Automata for Research and Industry,

Oct. 4-6, Karlsruhe, Germany.

Figure 12. Simulation example displayed in 3D

Figure 13. The log files containing the simulation results

[15] Kretz, T., Schrekenberg, M. 2006. Floor field- and Agent-

based Simulation Tool, International Symposium of

Transport Simulation 2006, Lausanne, Switzerland, 4 - 6.

[16] Li, B. et al., 2006. Indoor positioning techniques based on

wireless LAN. 1st IEEE International Conference on

Wireless Broadband and Ultra Wideband Communication.

Sydney, Australia, 13-16.

[17] Lo, S.M., Fang, Z., Lin, P., Zhi, G.S. 2004. An evacuation

model: the SGEM package, Fire Safety Journal, 39,

3(Apr.2004), 169-190.

[18] Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.

2005. Simulations of Evacuation by an Extended Floor Field

CA Model, Traffic and Granular Flow ’03.

[19] Penn, A., B. Hillier, D. Banister, and Xu, J. 1998.

Configurational modeling of urban movement networks,

Environment and Planning B-Planning & Design 25, 1, 59-

84.

[20] PostgreSQL, http://www.postgresql.org/.

[21] PostgreSQL/npgsql, http://pgfoundry.org/projects/npgsql/.

[22] QuantumGIS, http://www.qgis.org/.

[23] Randell, C. and Muller H. 2001. Low cost indoor positioning

system. Ubicomp 2010 Conference of Ubiquitous Computing.

42–48.

[24] SharpMap, http://www.codeplex.com/SharpMap/.

[25] Zhou, R., 2006. Wireless indoor tracking system (WITS). In

doIT Conference on Software Research, Verlag Heidelberg,

Germany, 163-177

	INTRODUCTION
	RELATED WORK
	INTRODUCING VISIBILITY INTO THE FLOOR FIELD MODEL
	Space partitioning based on visibility
	Implementing the visibility field

	IMPLEMENTING THE SIMULATOR
	Acquisition and storage of spatial data
	Converting to grid cells
	Simulation and 3D visualization

	SYSTEM TEST
	CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

