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ABSTRACT 

Two-dimensional geographic information systems (GISs) are 

mature technology and applications such as car navigation 

systems are commonplace. As indoor positioning techniques are 

developing, indoor 3D models are attracting increasing attention. 

However, modeling and implementing indoor 3D models 

applicable to real-time, client-server environments such as 2D 

GIS is a challenge and no working applications have yet been 

reported. As part of a multi-stage project that aims to build 3D 

indoor applications running in real-time, we are currently 

developing a fire evacuation system. Although not definitely 

required at this stage, we used a spatial DBMS as the input data 

instead of CAD files; the process of building floor plans and stairs 

is shown here. In developing the simulation model, we improved 

the existing ‘floor field’ model such that it can accommodate the 

visibility factor. While the previous floor field model does not 

capture the visibility effect, we revised the algorithm so it can 

give different walking speeds to pedestrians based on the level of 

visibility to the exits from where the pedestrians are located. We 

show the process of building the proposed 3D model and test the 

simulation system using a campus building. 

Categories and Subject Descriptors 

H.2.8 [Database Applications]: Spatial databases and GIS; 

I.3 [Computer Graphics]: Applications 
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1. INTRODUCTION 
Many variations of micro-scale pedestrian models have existed for 

decades [2, 3, 14]. However, most focus on scientific experiments 

and improvements rather than on relating to real-world 

applications. Many studies about indoor positioning techniques 

have recently appeared [12, 16, 23, 25], drawing our attention to 

their potential application in areas such as indoor navigation and  

fire evacuation. 

In collaboration with others, we are currently working on a 

government project to develop 3D indoor awareness systems. This 

project includes developing 3D models, indoor positioning 

techniques, 3D extensions for database management systems 

(DBMSs), and applications that use these techniques. We are 

focusing on developing a DBMS-based indoor fire evacuation 

system. This project is composed of multiple stages, from the 

development of a stand-alone simulator to a real-time evacuation 

system. It is unnecessary to point out the numerous benefits of 

DBMSs compared to file systems. The major anticipated 

advantages are similar to those of 2D geographic information 

systems (GISs). Current GISs are mature technology in terms of 

providing client-server functions, as in DBMSs. For example, 

navigation systems concurrently access a network database in 

such a way that users think of the data as being accessed by one 

user while other applications access the same data to retrieve 

polygons and related information. In order to make indoor 

applications real-time, server-client systems, the data must reside 

in a database to which different applications can send queries and 

from which they can retrieve different subsets of data. For 

example, indoor navigation uses network structure and indoor 

location-based services (LBSs) may need additional polygons and 

topological and semantic information. While positioning sensors 

use height information as well as floor plans, 3D visualization 

requires more detailed data, including data about walls and 

windows. The evacuation system we are working on needs to 

retrieve 2D floor and stairs in plan from the database. 

We are in the process of developing a stand-alone simulator and 

could have used CAD-based files [5, 17].  However, as mentioned, 

our aim is to make the system real-time and integrate positioning 

techniques later and to be one of the applications that share the 

same database. Thus, we chose to use a DBMS approach and will 

briefly introduce the process to build the data, although it is not 

the main topic of the paper. We will show how we used a 

simplified method to build a 3D structure that can model not only 

indoor rooms, but also multiple floors and stairs that can 

effectively be stored in DBMSs and can be converted to input data 

for the simulator. Once the data become available in the simulator, 

they are used as computation for simulation as well as for 

visualization in 2D or 3D. 
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The current concern is improving the pedestrian algorithm. 

Instead of developing a new model, we based our algorithm on an 

existing model developed by Kirchner et al., which is described 

later. While that model uses a fixed speed, we added a ‘visibility’ 

factor, considering that people having different sight lines to the 

exits have a differing ability to find the exits, especially in 

unfamiliar environments, resulting in different walking speeds. 

Along with data processing using a spatial DBMS, we show how 

to implement the visibility factor in the simulation. 

 

2. RELATED WORK 
Pedestrian models have been studied in many areas, such as 

network flow, traffic assignment, and simulations [1]. These 

models are generally categorized into macroscopic and 

microscopic models [6]. Macroscopic models are typically used in 

traffic flow optimization or way-finding approaches outdoors and 

use node-link structure as the base data structure. While 

macroscopic models ignore the differences of individuals and see 

them as a homogeneous group to be assigned to nodes or links, 

microscopic models include individual parameters (e.g., 

pedestrian movement speed, reaction speed, individual tendency), 

the interaction of pedestrians with other pedestrians, and the 

physical environment (e.g., walls, obstacles, smoke). Recently, 

two microscopic models have attracted particular attention—the 

social force model and the floor field model. A frequently cited 

social force model was advanced by Helbing et al. [7, 8, 9]. It 

involves mathematically calculating the forces that act on agents 

to determine their movement to other destinations (e.g., exits). 

Helbing’s model considers the effects of each agent on all other 

agents and on the physical environment (e.g., shoulder width, 

expectation speed, target spot, etc.), leading to the computation of 

O(n2) complexity, which is unfavorable for computer-based 

simulations with many agents [10, 11]. 

On the other hand, Kirchner et al. proposed a floor field model 

that uses a cellular automata approach. Instead of considering all 

the effects of an agent on all other objects in the space, it only 

considers the local interaction of an agent with neighboring 

objects and computes the movement of an agent at each time step, 

choosing the next destination among adjacent cells. This makes 

computer simulation much more effective. In this study, we used a 

floor field model as our base model.  

Kirchner’s floor field model uses two types of fields, static and 

dynamic, which are numeric values the agent consults before 

moving [13]. A cell in the static field indicates the shortest 

distance to an exit. An agent is in a position to know the direction 

to the nearest exit based on the values of nearby cells. While the 

static field has fixed values computed using the physical distance, 

the dynamic field stores dynamically changing values indicating 

agents’ virtual traces left as they move along their paths. Without 

having direct knowledge of where other agents are, it can follow 

other nearby agents by consulting the dynamic values. 

An agent moves to an adjacent cell in each time step after 

consulting the probability assigned to entire cells, which is the 

normalization of the following score. Readers are advised to refer 

to the related studies [15, 18]. 

 

                                  
              (1) 

, where Score(i) : the score at cell i 

   : the value of the dynamic field in cell i 

    : the value of the static field in cell i 
kd and ks : scaling parameters governing the degree to which an agent is 

sensitive to dynamic or static field respectively 
ξi : 0 for forbidden cells (e.g. walls, obstacles) and 1 otherwise 

ηi : 0 if an agent is on the cell, and 1 otherwise. 
 

The scaling factors in the formula mean the degree to which an 

agent is sensitive to static or dynamic fields; it is possible to 

simulate different pedestrian strategies by varying these values. 

For example, we can model herding behavior in panic situations 

by increasing sensitivity to the dynamic field. 

In this study, we revised Kirchner’s floor field model by adding a 

third field, called the ‘visibility field’. The visibility field is a 

layer of numerical values that indicates the degree of visibility of 

a cell to the nearest exit. This is described in detail in the 

following section. 

 

3. INTRODUCING VISIBILITY INTO THE 

FLOOR FIELD MODEL 
The static field in the floor field model is a layer composed of the 

shortest distance to an exit, which is computed before the 

simulation begins and does not change during the simulation. The 

static field assumes that two different locations in a room having 

the same distance from the exit have the same distance value, 

indicating they have an identical attraction force to the exit. 

However, it is reasonable to expect that an agent blocked by an 

obstacle such as furniture or a wall has less visibility and will be 

in a less favorable position to find the exit than those who have 

better visibility. For example, as illustrated in Figure 1, although 

agent A and B are located the same distance from the exit, agent B, 

who is located behind an obstacle, cannot see the exit directly. 

Not only is it obvious that agent B needs to turn more corners to 

reach the exit, but it is foreseeable that the agent may spend more 

time to find the exit, especially if less familiar with the 

environment. We introduced this visibility field into the existing 

floor field model. In order for the visibility field to be 

implemented, a space first needs to be divided into sub-spaces 

depending on different levels of visibility. Each agent in these 

sub-spaces should have different walking speeds. These are 

described below. 

 

 

Figure 1. Two agents having different visibility to the exit 



3.1 Space partitioning based on visibility 
In partitioning a space based on visibility, we employed the space 

syntax theory [4]. Space syntax is a technique that has been used 

to derive the connectivity of urban or architectural spaces [19]. 

While accessibility is generally used in transportation routes to 

measure the relative nearness or easiness of movement using  

distance or travel time as the cost, space syntax only considers 

‘depth’ as the cost and does not consider physical distance. It 

converts streets or corridors into a graph composed of visual paths 

called axial lines. When measuring the depth, it counts the number 

of axial lines, or turns of sight, traversed from one node to 

another; the greater the depth, the less structural connectivity a 

space has.  

A traditional network model is defined using its graph G(V, E), 

where V is the set of nodes defining places {vi | i = 1, 2, …, n} and 

E is the set of edges or links connecting them {vi, vj | eij, i,j = 1, 2, 

…, n}, where eij is defined as: 

 

     
                     

                      
                                     (2) 

 

Here, we can define higher-order connectivity using this unit 

connectivity. We can count the number of paths traversed from 

any node i to any other node j, which is defined as Sij. This index 

measures the depth of one node to other nodes and is in fact the 

basis of the depth in the space syntax theory. The depth Sij
z where 

z is the depth of node j from i can be computed as follows: 
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Then we can define the overall depth of j from i as Sij = z if Sij
z = 1. 

We applied this depth-based approach to construct the visibility 

field. We divided a space into sub-spaces based on the levels of 

visibility depths. Figure 2 illustrates how we implemented this. 

Let’s suppose we have a room with two obstacles, as shown in 

Figure 2. First, the regions (①) that can be seen directly from the 

exit are determined. Next, those regions (②) that can be seen 

from region(s) ① are determined. Then, following the same 

method, the regions (③) are determined, which can be seen from 

the region(s) ②. This process continues recursively until the 

entire room is covered by the sub-regions. Finally, these sub-

regions are assigned the depth values of 1, 2, or 3, indicating the 

levels of visibility to the exit. Figure 3 shows how a floor of a real 

building can be partitioned according to this method. It is divided 

into four sub-regions.  

 

 

3.2 Implementing the visibility field 
Once the visibility field has been computed as described above, 

the agents consult the depth values and the static and dynamic 

values assigned in the cells when they move. 

We implemented this by assigning different speeds according to 

the depths. Figure 4 shows the revised process, which includes the 

visibility field computation step. When implementing the walking 

speeds, we used time ticks, which are provided in the C# 

programming language. Time ticks are the waiting times until 

pedestrians move to the next cell. To calculate the visibility field 

using ticks, two kinds of parameters are required. The first is the 

starting value of the time tick. It is usually set to 0. The second is 

the increment value. The higher the value is, the longer an agent 

must wait before moving. Instead of moving to another cell 

simultaneously in every time step as in the previous model, an 

agent has to wait for the amount of time ticks assigned according 

to the visibility. Thus, those agents located in less advantageous 

regions in terms of visibility to the exit take longer to escape. By 

varying time ticks, we can simulate the differences between 

regions. 

Figure 5 shows a comparison between the floor field model and 

the one with the visibility field included. It shows snapshots taken 

in the same elapsed time after the start of the simulation. With 

only the static field taken into account, the left figure shows a 

bottleneck on both sides of the obstacle. This indicates that the 

agents behind the obstacles find the way out equally quickly 

 

Figure 3. An example of space partitioning 

 

Figure 2. Space partitioning based on the levels of visibility 



regardless of visibility once they are located the same distance 

from the exit. On the other hand, the figure on the right shows 

those agents located in higher depth areas move more slowly than 

those in lower depth areas. 

Figure 6 shows the evacuation time of a number of agents with 

varying time tick increments. Increment 0 is the same as in the 

existing floor field model. We carried out an experiment, 

changing the number of agents (100, 200, 300, and 400). As 

shown in the table, while the existing floor field model (increment 

value = 0) shows little difference in evacuation time, our model 

with the visibility (time ticks) shows rapidly increasing time for 

evacuation as the number of agents increases. When a time tick 

increment = 3, total evacuation time (810.5 seconds) is almost 

four times longer than that in the existing model (205 seconds). 

This indicates that the people with low visibility or connectivity 

take more time, and the time rapidly increases with an increasing 

number of people. By adjusting the increment, it is possible to 

simulate different situations. For example, for the people who are 

familiar with the given space, we can use a small increment 

because the effect of visibility is low, and conversely, those 

unfamiliar with the space have a high increment value. 

 

4. IMPLEMENTING THE SIMULATOR 
The implementation process was divided into two steps. First, 

topologically connected building floors and stairs and attribute 

data were constructed and stored in a spatial database. Then, they 

were converted to grid cells to be used as input data for the 

simulation. This input data could then be used as the computation 

in the simulator and 3D visualization. The processes are 

summarized in Figure. 7. 

Building floor data in CAD format were first converted to 2D 

vector layers such as shapefiles (Figures 7-(a) and (b)). Then, 

polygon and line data needed for 2D and 3D visualization and 

simulation were extracted and stored in a spatial DBMS. 

Topologically interrelated indoor compartments, including rooms 

and stairs, as well as attribute data were stored in the DBMS  

(Figure 7-(c)). The necessary parts were taken from the simulator 

and then converted to grid cell format for the simulation (Figure 

7-(d)). Finally, the simulation was carried out using the grid cell 

data. The processes can be displayed in 2D and 3D while the 

computations are performed (Figure 7-(e)). The simulation results, 

which consist of the number of escaped agents by time increment, 

were written to a log file and stored back in the DBMS for post 

analysis and later integration with real-time applications. 

 

Figure 5. Comparing the floor field model and the one with the 

visibility field included 

 

Figure 6. The evacuation time of varying numbers of agents 

with different increments 
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Figure 4. The simulation process including the visibility field 

computation 



 

4.1 Acquisition and storage of spatial data 
For the preparation of floor plan data, instead of developing a new 

format, we used the exiting shapefile format, which can be easily 

obtained using the tools included in many GIS applications. We 

used QuantumGIS [22] for the conversion. After the CAD files 

were imported to QuantumGIS, information about things such as 

walls, doors, rooms, corridors, and exits was extracted in the form 

of lines and polygons and stored into shapefiles. During the 

process, we also needed to assign proper coordinates for 

conversion to grid cell data later. Extracted 2D layers were stored 

in a spatial DBMS in table form. In this study, we used 

PostgreSQL/PostGIS for the DBMS [20]. Space elements such as 

corridors, rooms, walls, doors, and openings (exits) were stored in 

corresponding tables. Attribute data such as building floor 

numbers, room numbers, and room uses were also stored in the 

DBMS. 

In addition, stairs were constructed and stored separately in a table 

because they were not in plane form (as are building floors) and 

cannot be converted directly from CAD files using tools. As will 

be described later, our evacuation simulation requires plane data 

as the base data structure. Figure 8 describes the process for the 

conversion of stairs. First, stairs were divided into a connected set 

of rectangles. In Figure 8, we can see a simple type of stairs is 

composed of four rectangles. These stair polygons were then 

stored in the DBMS. In this way, all the floors and stairs were 

prepared in the form of planes that could later be converted to 2D 

arrays for the simulation. 

 

4.2 Converting to grid cells 
Since we based our model on the floor field model, we needed 

grid cell data as the input format. In this study, we used C# 

programming language to implement the simulation system. We 

used npgsql library [21], which is compatible with PostgreSQL, 

for loading spatial data. Details of the data conversion process are 

shown in Figure 9. First, the building data and attribute data 

stored in the DBMS were loaded into the simulator. Then, the 

loaded floors and the stair data were converted to bitmap formats 

using SharpMap [24], shown in Figure 9-(a). The SharpMap 

library provides functions to visualize spatial data fetched from 

spatial DBMSs in 2D. The reason for converting to bitmap format 

is that it has a raster structure that can easily be converted to grid 

cells and allows us to distinguish different layers using colors. In 

bitmap data, the layers of doors, rooms, hallways, and walls are 

assigned different colors because color values are used in 

assigning cell values. Figure 9-(d) shows that RGB values are 

used to represent those layers. 

Next, the coordinates of the floor and stair data were set since the 

converted grid data did not contain the coordinates. In this study, 

we used the top left corner of the first floor as the base coordinate. 

By using this, the coordinates of other floor spaces and stairs were 

relatively determined, as shown in Figure 10. 

The next step was to determine the cell size and the number of 

cells in each spatial element. We used 40 cm x 40 cm as the cell 

size of the grid data, considering human shoulder width. By using 

this size, we could derive the number of cells in each rectangular 

space. Then, as described above, cell values were assigned based 

on the bitmap colors (Figure 9-(d)). Through this process, the 

floors and stairs in vector layers were converted to grid cell data. 

We developed the simulation system such that this conversion 

process can be implemented seamlessly. 

 

 

Figure 8. Data construction process for stairs 

 

Figure 7. Data construction process 

 



 

4.3 Simulation and 3D visualization 
We carried out evacuation simulations using the converted grid 

cell data. We used the revised floor field model that uses our 

proposed visibility field. Randomly created agents were first 

placed in the target building and the evacuation process was run 

and visualized. To visualize the building and the moving 

pedestrians in 3D, we used OpenGL Library. In order to construct 

the walls and the 3D shapes of stairs, we used the height stored as 

attribute data in the DBMS. Stair slopes were calculated from 

these coordinates and displayed in 3D. 

The simulation results were stored in log files in text format. Exit 

locations and ID values of pedestrians according to escape time 

were stored. The total time it takes for all agents to escape could 

be obtained from this information. The system allows us to choose 

whether we apply the visibility field or not and to set various 

parameters. 

 

5. SYSTEM TEST 
We used a campus building for our system test. Following the 

processes described in the previous section, the building data in 

CAD format were converted to shapefiles and then stored in a 

spatial database. The system then read in the data and converted 

them to grid cells. Figure 11 shows the spaces partitioned based 

on visibility and Figure 12 shows a 3D snapshot during the system 

run. 

Figure 13 illustrates the log files containing simulation results. 

From this, we could obtain the ID of a certain agent and determine 

which exit that agent used for evacuation at a certain time. 

‘TIMETICK’ in Figure 13 represents the time spent for the 

evacuation. ‘AGENT ID’ is the agent’s id and ‘ACTION’ is 

whether or not the agent escaped. ‘INIT POS’ is the initial 

coordinates of the agent, and ‘EXIT POS’ is the coordinates of the 

exits used for escape. We could compute the time it took for all 

agents to evacuate. These log files were stored back in the DBMS. 

We could use these results to analyze the building structures, for 

example, to determine which parts of the building are bottlenecks 

that make escape difficult. If the system is integrated with 

localization sensors, which has not happened yet, the statistical 

records of people in different parts of the building captured by the 

sensors could then be used to refine the simulation or to help in 

rescuing people during real-time emergencies. 

 

 

 

 

 

 

Figure 10. Determining the base coordinate and the 

coordinates of other spaces 

 

Figure 11. Simulation shown in 2D with partitioning of the 

spaces by a visibility field 

 

Figure 9. Data construction process for grid cells 

 



 

 

6. CONCLUDING REMARKS 
In this study, we developed a 3D indoor pedestrian simulator 

using a spatial DBMS. The enhancement we aimed for is twofold. 

First, we developed a process to build and store 3D indoor 

building spaces using a spatial DBMS. When developing the 

simulator, we made it communicate seamlessly with the data in 

the DBMS for the preparation of input grid cell data. Second, we 

incorporated the visibility factor into the existing floor field model. 

By adding visibility field, we were able to model the level of 

disadvantageousness of finding the exit according to the degree of 

visual depths which is calculated by on what degree the visual 

paths to the exit are allowed from the given location. The results 

proposed here are part of an ongoing research project that aims to 

develop real-time systems. The simulation results stored in a 

database could be used under real-time emergency conditions to 

judge if the current population captured by sensors is abnormal 

compared to the stored exit capacity and if alternative routing is 

necessary. 
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