

Fuzzy-LP와 GIS를 이용한 토지이용문제에 관한 연구

- Solving a Land Use Problem Using Fuzzy LP & GIS -

2002. 5. 15.

서울시립대학교 지적정보학과 전철민

- 서론
- 이론적 배경
- Fuzzy_LP 알고리즘
- GIS와의 결합의 예
- 결론

. 서론

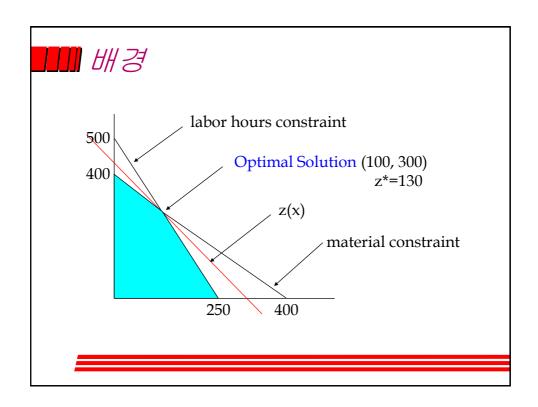
• GIS + Modeling Tools?

- 복잡한 문제를 해결하기 위해서는 GIS가 수학, 공학적인 모델링툴과 결합되는 것이 필요
- LP(Linear Programming)는 주어진 자원을 최적으로 배분하는 문제에 사용되는 수학적인 기법
- GIS는 공간데이타를 표현, 관리하는 기법
- 불명료한(fuzzy) 상황을 다루기 위해 Fuzzy logic을 사용한 fuzzy-LP를 개발하고, 이를 GIS와 통합하는 방법론을 제시
- 통합시스템에서 GIS는 Fuzzy-LP과정으로 데이터를 공급하거나 Fuzzy-LP의 결과값을 표현하는데 이용

聞₩경

• 전통적인 LP

max z = cx (objective function) subject to $Ax \le b$ (constraints) $x \ge 0$ (decision variables)


▋▋▋₩경

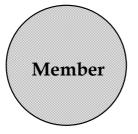
•LP의 예

두 종류의 인형을 생산할 때, 하나는 \$0.40 또 하나는 \$0.30의 이윤이 생김. 만드는데 인형 A는 개당 두시간, 인형 B는 한시간이 소요되며, 총 노동시간은 500시간을 넘지 못함.

인형 A, B를 합해서 하루에 400개분 이하의 원료가 공급됨.

maximize
$$z = 0.4x1 + 0.3x2$$
 (profit)
subject to $x1 + x2 \le 400$ (material)
 $2x1 + x2 \le 500$ (labor hours)
 $x1, x2 \ge 0$

Ⅲ배경

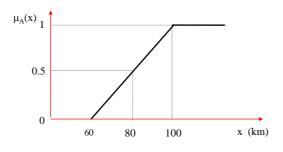

• 전통적 LP의 한계

- 실제 상황에서는 의사결정자(DM)가 이렇게 조건들을 명료하게 줄 수 있을 만큼 충분한 데이터를 가지고 있지 못할 때가 많음.
- 가용 노동시간이나 원료를 "약 500시간" 또는 "400개 보다는 꽤 적게" 등으로 주고, 또한 현재 수익을 "약 30%향상" 등으로 부여.

IIIII 배경

• 일반 집합과 퍼지 집합

- 일반 집합이 원소의 소속여부에 따라서 <u>0과 1</u>의 값을 갖는데 비해, 퍼지집합은 집합에의 소속도가 <u>0과 1사이의 임의의</u> 실수값을 갖는 집합


Boolean Set

Fuzzy Set

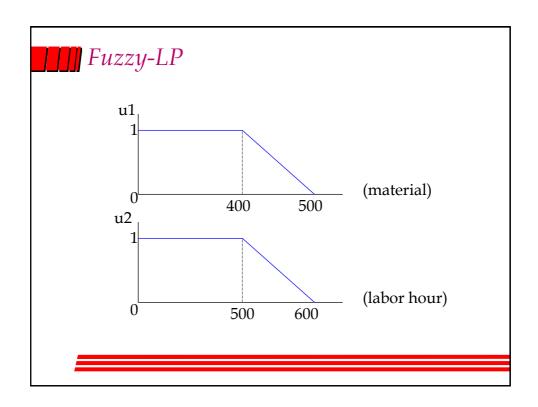
- 멤버쉽함수(membership function)
 - 퍼지집합의 각 원소의 소속도를 나타내는 함수.
 - 예를 들어, x축은 속도를, y축은 "고속" 집합(A)에 속하는 정도를 0에서 1까지의 값으로 표현한, 소속도값(membership value)을 나타냄.

"고속"에 대한 멤버쉽함수

Fuzzy-LP

1. 전통적 LP:

자원이 명확히 정의될 수 있을 때, 전통적인 LP는 다음과 같이 정의된다.


max
$$z = cx$$

s. t. $(Ax)i \le bi$,
 $x \ge 0$

IIIII Fuzzy-LP

• Fuzzy LP

Zimmermann(1976)은 일반 LP를 다음과 같이 fuzzy version으로 변화된 식을 제시 $zo\ \widetilde{\leq}\ cx \\ (Ax)i\ \widetilde{\leq}\ bi$ $x\ge 0$

여기에서 <= 은 일반 LP의 부등호 ≤의 퍼지화된 형태임

Fuzzy-LP

2. Fuzzy 자원 (with b_i and p_i given)

max
$$z = cx$$

s.t. $(Ax)_i \le \tilde{b}_i$
 $x > 0$

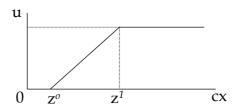
이는 다음의 parametric LP (Verdegay)와 동일

max
$$z = cx$$

s.t. $(Ax)_i \le b_i + \theta p_i$
 $\theta \in [0, 1]$ and $x \le 0$

IIIII Fuzzy-LP

3. Fuzzy 자원과 목표 (without b_o and p_o given)


 b_o : goal of objective function p_o : tolerance of b_o

max
$$\tilde{z} = cx$$

s.t. $(Ax)_i \le b_i + \theta p_i$
 $\theta \in [0, 1]$ and $x \ge 0$

$$\begin{split} z^0 &= \max \quad cx \\ s.t. \quad \left(Ax\right)_i \leq b_i \,, \quad x \geq 0 \\ z^1 &= \max \quad cx \\ s.t. \quad \left(Ax\right)_i \leq b_i + p_i \,, \quad x \geq 0 \end{split}$$

IIII Fuzzy-LP

• 최적해는 z^0 와 z^1 사이에 있게 되므로, 해가 커질 수록 최적해에 대한 만족도도 커짐

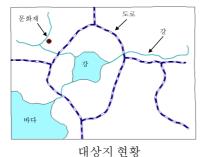
- •max-min 연산자를 이용해서 최적해를 구함.
- •퍼지목표를 갖는 LP문제는 다음 식을 통해서 구하게 됨.

 $\max \ \mu_D = \max\{\min[\mu_0(x), \mu_1(x), ..., \mu_m(x)]\}$

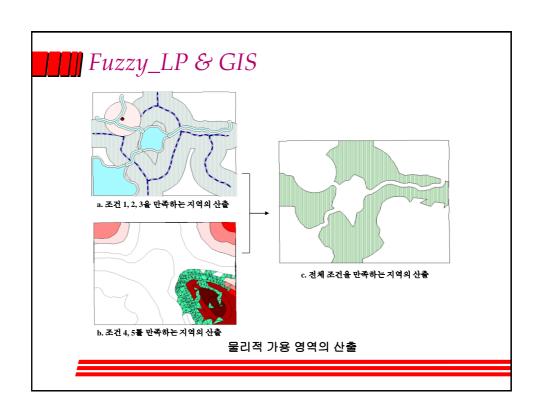
IIII Fuzzy-LP

 α =1- θ 로 놓으면 주어진 문제는 다음과 같이 변화됨:

$$\begin{array}{ll} \text{min} & \theta \\ \text{s.t.} & cx \geq z^1 - \theta(z^1 - z^0) \\ & (Ax)_i \leq b_i + \theta p, \ \forall_i \\ & \theta \in [0, 1] \ \text{and} \quad x \geq 0 \end{array}$$


4. Fuzzy 자원과 목표 (with b_o and p_o given)

Fuzzy_LP & GIS


- Fuzzy-LP와 GIS의 결합에 의한 토지이용 문제의 사례
 - Fuzzy-LP와 GIS를 연동하여 활용할 수 있음을 간단한 토지이용 문제를 사용하여 예시.
 - Fuzzy-LP와의 관계에 있어서 GIS는 두 가지의 역할을 함.
 - » 첫째, 가용한 자원(여기에서는 가용한 토지)의 경계를 정하는데 이용됨
 - » 둘째, Fuzzy-LP과정의 결과값을 표현하는데 이용됨.

• 대상지에서의 물리적 조건

 예를 들어 어떤 지역에 벌목을 위한 삼림지를 조성하고자 하는데, 소나무, 참나무, 전나무의 세 가지를 심고자 한다. 이렇게 벌목지를 조성하기 위해서는 아래와 같이 몇 가지 법적 규정 및 물리적 제한조건을 만족해야 한다.

- 1.문화재로부터 10km이내 지역에서는 벌목을 할 수 없다.
- 2.토양침식을 막기 위해서 해변, 강변 지역 1km이내에서는 벌목을 할 수 없다.
- 3.도로에서의 접근성으로 인해 도로에서 약 8km정도까지만 벌목이 가능한 것으로 한다.
- 4.벌목지는 결빙이 적은, 고도 1000m이하에서만 가능하도록 한다.
- 5.벌목기구는 경사 5도 이상에서는 동작이 어렵다.

1. 전통적 LP:

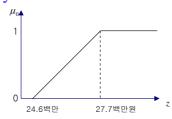
```
maximize z=200x_1+250x_2+300x_3 (이윤) subject to x_1+x_2+x_3\le 180,000 (가용면적) 170x_1+200x_2+250x_3\le 20,000,000 (조성비) x_1\ge 30000 (필수지역) x_1,x_2, and x_3\ge 0
```

※ "가용면적" 180,000ha는 GIS에서 산출된, 각 조건을 만족하는 면적임

목표함수값 z* = 약 24,600,000원

만약 Fuzzy한 자원조건을 부여해야 할 경우, 2단계로 감.

III Fuzzy_LP & GIS


2. Fuzzy조건을 가진 Fuzzy LP:

maximize
$$z = 200x_1 + 250x_2 + 300x_3$$
 (이윤) subject to $x_1 + x_2 + x_3 \le 104500 + 10000$ (가용면적) $170x_1 + 200x_2 + 250x_3 \le 20,000,000 + 3,000,0000$ (조성비) $x_1 \ge 30000 - 2000$ (필수지역) $x_1, x_2, \text{ and } x_3 \ge 0$

	<u>실제 사용된 자원</u>					
θ	Ζ*	가용면적	조성비	A지역		
0.0	24,625,000.0	104500.0	20,000,000.0	30000.0		
0.1	24,930,400.0	104600.0	20,300,000.0	29980.0		
0.2	25,235,800.0.	104700.0	20,600,000.0	29960.0		
0.3	25,541,200.0	104800.0	20,900,000.0	29940.0		
0.4	25,846,608.0	104900.0	21,200,008.0	29920.0		
1:		:		:		
1.0	27,679,010.0	105500.0	23,000,008.0	29800.0		

만약 퍼지 목표값을 부여해야 할 경우, 3단계로 진행함.

3. Fuzzy조건 및 목표를 가진 Fuzzy-LP

(without b_o and p_o)

```
min \theta s.t. z = 200x_1 + 250x_2 + 300x_3 \ge 27,679,010.0 - 3,054,010\theta (이윤) g_1(x) = x_1 + x_2 + x_3 \le 104000 + 10000\theta (가용면적) g_2(x) = 170x_1 + 200x_2 + 250x_3 \le 20,000,000 + 300\theta (조성비) g_3(x) = x_1 \ge 30000 - 200\theta (필수지역) x_1, x_2, \text{ and } x_3 \ge 0 \text{ and } \theta \in [0, 1] \ge 0
```

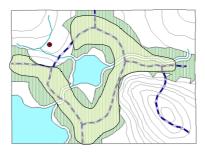
Fuzzy_LP & GIS

4. Fuzzy조건 및 목표를 가진 Fuzzy-LP

(with bo and po)

			실제 사용	된 자원	
P ₀	θ	\mathbf{z}^*	가용면적	조성비	A지역
0	0.55	25,846,608.0	96191.8	21,639204.0	30109.3
244321.6	0.51	25,721,596.0	95772.8	21,535004.0	30102.3
488643.2	0.48	25,611,528.0	95403.8	21,443260.0	30096.2
977286.5	0.43	25,426,650.0	94784.1	21289162.0	30085.9
1221608.1	0.41	25,348,264.0	94521.4	21223826.0	30081.6

만약 이 테이블에서 p_0 가 488643.2인 경우를 최적해로 선택하였을 경우, 다음의 해를 갖게 된다.

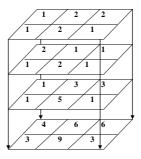

VARIABLES VALUES X1 30096.215 X3 65307.617

RESOURCES ACTUALLY USED:

> THE AMOUNT OF 1th RESOURCE USED: 95403.828
> THE AMOUNT OF 2th RESOURCE USED: 21443260.000
> THE AMOUNT OF 3th RESOURCE USED: 30096.215

• GIS에서 결과의 표현

- 대상지역내에서 공간을 점유하는 문제가 남게 됨.
- 다양한 물리적 조건이 존재하는 공간 내에서 선호가 되는 적합한 지역을 찾는 문제는 또 다른 과제가 됨.



도로에서의 근접성을 중심으로 한 공간할당의 예

Fuzzy_LP & GIS

• GIS에서 결과의 표현

 각 결정요소(layer)에서 분포된 속성값들을 범주화(categorize)하고 점수를 부여해서 누적시킨 후 얻어지는 누적점수로써 개발 적합성을 표현할 수 있음.

점수가 부여된 layer들을 중첩시킴으로써 누적점수 layer를 구하는 방법

]]]]] 결론

- 기존의 LP기법은 명료한 데이터를 부여해야 되므로 토지이용배분문제와 같이 명료하지 못한 제한조건을 줄 수 밖에 없는 상황에서는 현실적으로 사용되기 어려움
- 본 연구에서는 이러한 문제를 다루기 위해 Fuzzy이론이 결부된 Fuzzy LP를 이용하는 방법을 제시
- 퍼지값을 부여하는 다양한 경우와 방법을 수용하기 위해서 의사결정자와 상호교류를 하면서 유연하게 문제해결을 해 나갈 수 있도록 Fuzzy-LP 프로그램을 구현. 의사결정자는 여러가지 불명확한 상황들을 테스트해보고 다시 문제를 재 정의해 가면서, 문제해결을 위한 더 나은 접근법을 터득해 나갈 수 있게 됨.
- 본 연구에서는 LP기법에서 공간적인 제한요소를 정의하는데 있어서 GIS가 유용하게 사용될 수 있음을 제시
- 그러나 LP과정에서 산출된 양적인 결과를 공간상에 배분하는 문제는 가중치설정 등 보다 복합적인 고려가 요구됨. AHP와 GIS를 이용해서 가중치의 문제를 다루는 논문은 본 저자(1997)의 연구를 포함하여 다른 연구결과 참고요망.