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A B S T R A C T

Prediction models ranging from statistical probability to machine learning techniques have been employed to 
improve and manage urban air quality. However, the number of air quality monitoring stations (AQMS) for the 
collection of air quality information is limited. This study established a model that explains the relationship 
between six air pollutants–SO2, CO, O3, NO2, PM10, and PM2.5–measured by approximately 443 AQMS in South 
Korea and factors, such as the vegetation index, topography, and land cover elements. The model analyzed the 
impact of land cover changes on air pollutant concentrations and derived scenarios predicting changes in the air 
quality due to land use changes. Despite the relatively small sample size of approximately 360 AQMS, multiple 
regression analysis demonstrated higher explanatory power compared with Xtreme Gradient Boosting, a 
representative machine learning technique. The optimal spatial range for explaining air pollutant concentrations 
varied for each air pollutant. The highest R2 in the multiple regression analysis was 0.34 at a distance of 12,000 
m for SO2; 0.27 at 11,000 m for CO; 0.50 at 6000 m for O3; 0.70 at 18,000 m for NO2; 0.49 at 18,000 m for PM10; 
and 0.48 at 11,000 m for PM2.5. Certain land cover characteristics were found to significantly affect air quality, 
whereas small-scale restoration had a minimal impact on air quality improvement, and large-scale development 
substantially increased pollutant concentrations. This study provides essential information for urban planning 
and policymaking aimed at improving urban air quality.

1. Introduction

Continuous urbanization has led to the development of industries 
within cities and a proportional increase in population, which increases 
automobile traffic. Urbanization has caused rapid changes in land use 
within cities, leading to environmental issues, such as air quality dete
rioration (Balew and Korme, 2020). Urban air pollution significantly 
negatively affects the quality of life and health of urban residents (Faiz, 
1993; Akimoto, 2003). Large cities with high population densities, such 
as Seoul, face crucial air pollution problems (Wang et al., 2004). The 
World Health Organization (WHO) estimates that exposure to air 
pollution results in seven million premature deaths annually and the loss 
of millions of healthy life years (World Health Organization, 2021).

Urban air pollution is driven by several factors, including the use of 
fossil fuels (Johnston et al., 2011), the scale of the city and its associated 
production activities (Capello and Camagni, 2000), and the conversion 
of mountainous areas for urban development (Lee et al., 2016). These 
activities are primarily driven by socioeconomic activities aimed at 
addressing basic production and consumption needs, as well as the 
essential requirements for food, clothing, and shelter of urban residents 
(Irga et al., 2015; Yang et al., 2017). These activities vary depending on 
the urban spatial structure and land-use patterns. Therefore, to improve 
and manage urban air quality, the land use, land cover, and spatial 
structure of the city must be considered (Chen et al., 2022).

Several studies have attempted to identify urban elements that 
directly or indirectly cause air pollution in cities. Among the various 
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urban elements, urban transportation systems and spatial structures 
(Baldauf et al., 2013), population distribution and density (Van Der 
Waals, 2000), and terrain shape (Hanna et al., 1982; Roberts et al., 
1994) are associated with urban air pollution. Other studies have 
focused on the relationship between land use, which is one of the most 
representative urban components, and air pollution. Patterns and 
changes in land use affect air pollutant dispersion and air quality (Huang 
et al., 2013; Wei and Ye, 2014; Zahari et al., 2016; Huang and Du, 2018). 
Rapid changes in land use can lead to sudden increases in air pollution 
(Du et al., 2010; Tao et al., 2015; Hien et al., 2020). Furthermore, the 
composition and concentration of air pollutants vary depending on land 
use and the spatial ranges over which air pollutants disperse (Nagar 
et al., 2017; Hsu et al., 2018; Harrison, 2020; Yu and Park, 2021). 
Additionally, as wind (affected by urban patterns and building heights) 
influences these air pollutants, their concentrations vary depending on 
the layout of the city and the height of buildings (Blocken et al., 2016; 
Tuckett-Jones and Reade, 2017).

To address these issues, previous studies have employed prediction 
models ranging from statistical probability techniques to machine 
learning. Commonly used statistical probability techniques include 
correlation analysis and multiple linear regression models, whereas 
machine learning algorithms include ANN (Wang et al., 2019; Park 
et al., 2020; Chen et al., 2021), KNN (Bozdağ et al., 2020; Tella and 
Balogun, 2021), SVM (Yang et al., 2018; Su et al., 2020; Mogollón-Sotelo 
et al., 2021; Zhang et al., 2021), Random Forest (RF; Yuchi et al., 2019; 
Shao et al., 2020; Ma et al., 2021a,b), Ensemble (Lim et al., 2019; Van 
Roode et al., 2019; Adams et al., 2020; Huang et al., 2022), and Xtreme 
Gradient Boosting (XGBoost; Hu et al., 2017; AlThuwaynee et al., 2021; 
Zhao et al., 2021). Machine learning algorithms are powerful tools for 
modeling complex relationships and interactions within data. They have 
been proven effective in predicting various scenarios more accurately 
and uncovering patterns that traditional research methods may overlook 
(Ma et al., 2024).

However, a vast amount of data is required for performing machine 
learning or deep learning analysis and the installation of air quality 
monitoring stations (AQMS) for the collection of air quality information 

is inherently limited. Therefore, studies should examine whether the 
unconditional application of machine learning or deep learning tech
niques is appropriate in cases where the number of available samples is 
limited (Smith et al., 2013; Luan et al., 2020; Rajput et al., 2023) or 
whether regression analysis is more a suitable alternative 
(Bonilla-Bedoya et al., 2021).

This study aimed to differentiate itself from previous studies by 
focusing on the following aspects: South Korea has 443 AQMS nation
wide, which were used for the analysis in this study. Based on the limited 
AQMS data, we examined the suitability of the model and reviewed the 
spatial extent required to adequately explain air quality. By examining 
spatial ranges to the AQMSs from near (1000 m) to distant (20,000 m), 
we aimed to identify the land use and meteorological characteristics that 
affect air quality within specific ranges and examine their explanatory 
power differences. Additionally, we verified how land use and vegeta
tion indices within these ranges impacted specific air quality measures. 
Finally, we aimed to determine whether the established model could 
predict changes in air pollutant concentrations resulting from land-cover 
changes. This study aimed to provide crucial foundational information 
for urban planning and policymaking aimed at improving urban air 
quality by analyzing the impact level of independent variables related to 
land cover and land use on air pollutant concentrations.

2. Materials and methods

2.1. Study area

This study focused on South Korea (Fig. 1), covering a total area of 
approximately 118,118.94 km2 (Kim and Kim, 2022). The temporal 
scope of this study was based on 2019 data. This study was limited to the 
year 2019 to ensure that the analysis reflects typical air quality condi
tions, excluding the unusual disruptions caused by the COVID-19 
pandemic, which significantly reduced air pollution levels at the 
beginning of 2020. Numerous studies have reported a substantial 
reduction in air pollutant concentrations during the early stages of the 
pandemic due to decreased anthropogenic activity (Chossière et al., 

Fig. 1. Study area Korea and Areas Affected by Land-Use Change Scenarios: Dongjak-daero and Surrounding Greenbelt.
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2021; Dutheil et al., 2020). Therefore, using data from 2020 onward 
could introduce biases in the analysis, as the changes in air quality 
during this period were driven by temporary behavioral and policy shifts 
rather than long-term land-use changes.

Dongjak-daero serves as a representative case of urban trans
formation in South Korea, where rapid urbanization has led to increased 
traffic congestion, reduced green spaces, and significant air quality 
challenges. To address these issues, an underground road and drainage 
tunnel have been planned to alleviate congestion and flooding while 
restoring surface-level green spaces, effectively converting the area into 
a park (Chosun Biz, 2023). Additionally, the potential impact of the 
removal of greenbelt development restrictions in Seoul on neighboring 
areas must be considered. This study analyzed the implications of these 
urban development initiatives, particularly their effects on air quality 
and the balance between urban expansion and environmental sustain
ability, offering insights applicable to cities facing similar challenges.

Fig. 1 illustrates the study area, highlighting the regions affected by 
major land-use change scenarios, including Dongjak-daero (Scenario 1) 
and the potential greenbelt removal (Scenario 2). The left panel provides 
a national-scale view of South Korea, where red dots indicate air quality 
monitoring stations distributed across the country. The right panel 
presents a zoomed-in map of Seoul, detailing the specific areas of in
terest for this study. The blue line represents the planned Dongjak-daero 
underground road and drainage tunnel project (Scenario 1). The red- 
shaded areas represent regions where greenbelt restrictions are 
assumed to be lifted, allowing for potential urban expansion (Scenario 
2). The green-shaded areas indicate existing greenbelt zones that remain 
protected. And the yellow triangles mark the locations of air quality 
monitoring stations that will be used in Scenario 2.

2.2. Data

Table 1 summarizes the air quality monitoring data used as the 
dependent variables for analyzing air quality concentrations. The data 
on vegetation indices [Normalized Difference Built-up Index (NDBI) and 
Normalized Difference Vegetation Index (NDVI)], topography (Eleva
tion, Slope), and Level-3 land cover were used as independent variables.

2.2.1. Dependent variables
Air pollutant concentration data (CO, NO2, O3, SO2, PM10, and 

PM2.5) from January to December 2019, obtained from AirKorea, were 

used as dependent variables. After preprocessing, the annual average 
values were calculated. AirKorea provided AQMS data for South Korea 
on an hourly basis, which was collected as point data for analysis. A total 
of 443 AQMSs (Air Quality Monitoring Stations) distributed nationwide 
were initially collected for analysis. After preprocessing, 351 to 365 
AQMSs were used for each type of air quality measure. Some monitoring 
stations were excluded to ensure data reliability and consistency, as 
stations with significant NoData values were removed during the pre
processing stage.

2.2.2. Independent variables
The independent variables included vegetation indices (Fig. 2(a) and 

2(b)), topography (Fig. 2(c) and (d)), and level-3 land cover areas (Fig. 2
(e)). The vegetation indices included NDBI and NDVI derived from 
Sentinel-2 satellite images.

In this study, Sentinel-2A/MSI L1C imagery, captured by the Euro
pean Space Agency (ESA) on May 23, 2019, was used as raw data to 
calculate the vegetation indices. The cloud-free imagery was pre
processed using the Semi-Automatic Classification tool. The indices 
were calculated using Sentinel-2 Band 4 (RED), Band 8 (NIR), and Band 
11 (SWIR) as follows: 

NDBI =
(

SWIR − NIR
SWIR + NIR

)

and (1) 

NDVI =
(

NIR − Red
NIR + Red

)

. (2) 

Where SWIR: Short-Wave Infrared, NIR: Near-Infrared, Red: Sentinel 
Red Band.

Topographical characteristics, including elevation and slope, were 
also used in this study. Elevation data was derived from digital elevation 
model (DEM) datasets obtained from the National Spatial Data Infra
structure Portal [NSDI, available online: NSDI (nsdi.go.kr) (accessed on 
December 6, 2023)], and the slope was calculated using DEM data.

Additionally, a Level-3 land cover map (10 m resolution), provided 
by the Environmental Geographic Information Service [available online: 
EGIS (me.go.kr) (accessed on December 6, 2023)] was used. The Level-3 
land cover map of South Korea classifies land features, such as resi
dential, commercial, industrial areas, and green spaces, into 41 cate
gories following standardized criteria. This map was created at a 1:5000 
scale and has been updated annually by the Ministry of Environment 
since 2019 (Mun and Kil, 2024). The AQMSs used in this study are 
mainly located in urban areas, leading to an uneven distribution of land 
cover types within the buffer zones. Fig. 2(e) shows the Level-3 land 
cover classification used in this study.

2.3. Methods

2.3.1. Research procedure
This study analyzed the relationship between air pollutant concen

trations (CO, NO2, O3, SO2, PM10, and PM2.5) and variables, such as 
vegetation indices, topography, and land use. Zonal statistics were 
performed within 20 buffer zones (1000–20,000-m at 1000-m intervals) 
around the AQMSs. Independent variables with a VIF greater than 10 
were excluded due to multicollinearity (Fig. 3).

Numerous studies have examined the relationship between air 
pollutant concentrations and surrounding land use/cover by analyzing 
spatial ranges extending up to 1–20 km to capture broader spatial im
pacts (Yang and Jiang, 2021; Ma et al., 2024). In this study, we used 1 
km increments for our analyses, creating a balance between fine-scale 
sensitivity and computational feasibility. Although it is theoretically 
possible to employ finer increments (e.g., 100 m), such high-resolution 
analyses would require substantially more computing resources and 
longer processing times. Consequently, a 1 km scale was deemed 
appropriate for balancing fine-scale sensitivity with computational 

Table 1 
Air quality monitoring data used in air quality concentration analysis.

Data Spatial 
Resolution

Source 
(Year)

Dependent 
Variable

Air Quality 
Concentration

CO (ppm) Point AirKorea 
(2019)NO2 (ppm)

O3 (ppm)
SO2 (ppm)
PM10 (㎍/㎥)
PM2.5 (㎍/㎥)

Independent 
Variable

Vegetation 
Index

NDBI 10 × 10 m Sentinel-2 
(2019)NDVI

Topography Elevation Digital 
Terrain 
Model 
(2019)

Slope

Level-3 land 
cover area

Urbanized 
area

Level-3 land 
cover map 
(2019)Agricultural 

area
Forest area
Grassland 
area
Wetland area
Bare land 
area
Water area
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efficiency, a choice that aligns with several existing studies in the field 
(Liu et al., 2021; Phillips et al., 2021).

Multiple Linear Regression (MLR) and XGBoost models were devel
oped and the best model for each pollutant was selected. The coefficients 
from the MLR model were examined to identify significant correlations 
between land cover characteristics and pollutant concentrations. Addi
tionally, Shapley Additive Explanations (SHAP) values were used to 
interpret the contribution and importance of each feature in the models.

The optimal buffer radius and key influencing factors were identified 
for each pollutant. Two scenarios were then simulated: converting 
Dongjak-daero into a green space and urbanizing the surrounding 
greenbelt, with the predicted air quality changes listed in Tables 2 and 3.

2.3.2. Multiple linear regression
MLR is a statistical method used to analyze the relationship between 

a dependent variable and multiple independent variables. MLR fits the 
data into a linear equation to determine the contribution of each inde
pendent variable to the dependent variable and, ultimately, identifies 
the best-fit line that minimizes the difference between the observed and 
predicted values (ordinary least squares; OLS) (Gulati et al., 2023), 
defined as follows: 

y = β0 + β1x1 + β2x2 + … + βnxn + ϵ, (3) 

where β0: intercept, βi: coefficients for each independent variable xi, xi: 
independent variable ϵ: error term.

Separate models were built for SO2, CO, O3, NO2, PM10, and PM2.5 
using vegetation indices, topography, and land-cover features as inde
pendent variables.

2.3.3. XGBoost
XGBoost is a scalable machine learning system for tree boosting that 

improves on Gradient Boosting by addressing challenges, such as over
fitting and learning speed (Chen and Guestrin, 2016). XGBoost was used 
to handle tabular data due to its efficiency and ability to prevent over
fitting through several methods. First, it uses a regularized loss function 
that reduces model complexity and prevents overfitting, as follows 
(Dong et al., 2022): 

L (ϕ) =
∑

i
l(ŷi, yi) +

∑

k

Ω(fk),Ω(f) = γT +
1
2

λ‖w‖
2
, (4) 

where L (ϕ): total objective function, l
(
ŷi, yi

)
: loss function, Ω(f): reg

ularization term to control model complexity, γ and λ: the regularization 
parameters(L1,L2), T: number of leaves, w: leaf weights.

Second, shrinkage reduces the influence of earlier trees, functioning 
similarly to a learning rate adjustment. Finally, column subsampling 

Fig. 2. Variables used in the study: (a) NDBI, (b) NDVI, (c) Elevation, (d) Slope, and (e) Level-3 land cover.
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selects a subset of features for training, further reducing overfitting risk 
(Dong et al., 2022).

Another key reason for selecting XGBoost was its ability to handle 
multicollinearity effectively, which is a common issue in air quality 
datasets where several input variables can be highly related. The tree- 
based structure of the model inherently reduces the impact of multi
collinearity by prioritizing the most informative features during the 
splitting process. Additionally, regularization methods (L1 and L2) 
further help mitigate the effects of multicollinearity by shrinking the 
coefficients of less relevant features to zero, thereby improving model 
stability and performance.

To address potential overfitting in the XGBoost model, hyper
parameter tuning was conducted using GridSearchCV with 5-fold cross- 
validation (Fig. 4). The parameter grid included n_estimators, learnin
g_rate, reg_alpha, reg_lambda, max_depth, and subsample. Additionally, 
the dataset was split into 80% training and 20% testing data to ensure 
unbiased model validation. StandardScaler was applied for scaling and 
variables with high multicollinearity (VIF >10) were removed before 
training. The hyperparameter tuning results are shown in Fig. 4.

2.3.4. Scenario assumptions
In this study, two land-use change scenarios were designed to eval

uate the impact of land-use alterations on air quality. The assumptions 
behind each scenario were established based on real-world urban 
planning discussions and policies to ensure practical relevance (Fig. 5).

Scenario 1: Road Greening (Dongjak-daero Conversion to Green 
Space)

The first scenario assumed that the surface of Dongjak-daero would 
be converted into green space after constructing the underground road 
and drainage tunnel. This assumption was based on recent urban plan
ning initiatives aimed at reducing urban heat islands, improving air 
quality, and restoring green spaces in metropolitan areas.

The types of vegetation selected for conversion (deciduous forests, 
coniferous forests, and mixed forests) were chosen to reflect typical 
urban greening projects due to their air pollution mitigation potential 
(Nowak et al., 2006). The selection also accounted for vegetation 
maturity, as mature vegetation can more effectively capture air pollut
ants and provide cooling effects. It was assumed that traffic previously 
using Dongjak-daero would not significantly increase on neighboring 
roads, allowing the analysis to focus solely on the direct environmental 
benefits of converting the road surface into green space.

Scenario 2: Greenbelt Development (Urbanization of Adjacent Green 
Areas)

The second scenario assumed that greenbelt areas surrounding 
Dongjak-daero would be converted into urban developments, such as 
residential, commercial, and industrial facilities. This assumption was 
based on ongoing policy discussions in South Korea regarding the 
relaxation of greenbelt regulations to address housing shortages in 
urban areas. The types of developments assumed in this scenario were 
chosen to reflect typical patterns observed in urban expansion projects. 
It was further assumed that such developments would produce increased 
emissions from vehicle traffic and industrial activities, contributing to 
higher air pollutant concentrations. To ensure consistency, it was 
assumed that existing industrial emission controls would remain con
stant during the analysis period.

3. Results

3.1. MLR vs. XGBoost

We calculated the mean values of the landscape and topography 
characteristics, along with the total land cover area, within buffer zones 
ranging from 1000- to 20,000-m at 1000-m intervals for the following 
air pollutants: SO2, CO, O3, NO2, PM10, and PM2.5. Independent vari
ables with a VIF >10 were excluded from model training. During this 
process, NDVI and certain land cover variables were removed due to 
high multicollinearity, as they did not significantly improve model 
performance.

MLR consistently showed higher explanatory power for predicting 
air pollutant concentrations compared with XGBoost. Conversely, 
XGBoost demonstrated overfitting, as seen in certain cases. For instance, 
in the 1000 m model for CO, the R2 value for the training model was 
0.1652, whereas that of the test model decreased to 0.0107 despite L1 
and L2 regularization.

Fig. 6 illustrates the R2 values of MLR (blue line) and XGBoost (green 
line) across buffer zones from 1000 to 20,000 m for each dependent 
variable. The red box highlights the buffer zone where MLR achieved its 
highest R2 value for prediction, indicating optimal model performance 
at each distance.

Tables S.1–6 present the explanatory power (R2) of multiple linear 
regression and XGBoost for each dependent variable across buffer dis
tances. The optimal buffer distance for SO2 was determined to be 

Fig. 3. Flowchart explaining the methods used in this study.
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12,000 m, yielding the highest explanatory power (R2 = 0.3402). The 
differences in R2 values among the 11,000-m (R2 = 0.34), 12,000-m (R2 

= 0.3402), and 13,000-m (R2 = 0.34) distances are minimal. For other 
pollutants, the optimal buffer distances varied: CO peaked at 11,000 m 
(R2 = 0.2733), O3 showed the highest R2 at 6000 m (R2 = 0.5024), NO2 
reached its maximum explanatory power at 18,000 m (R2 = 0.7037), 
PM10 had its highest R2 at 18,000 m (R2 = 0.4898), and PM2.5 peaked at 
11,000 m (R2 = 0.4822). These optimal buffer distances were chosen to 
develop models that effectively capture air pollutant variations across 
different spatial scales.

3.2. Correlations between land cover characteristics and air pollutants

In this study, multiple linear regression was employed to examine the 
relationships between air pollutant concentrations and various land 

cover characteristics. The results revealed that certain land cover types 
significantly affect pollutant levels, consistent with the expected spatial 
distribution of emission sources and dispersion processes. The results for 
each pollutant, as summarized in Tables S.7–12, indicate distinct re
lationships between specific land cover types and air pollutant levels.

For SO2, industrial facilities and tidal flats exhibited significant 
positive correlations with SO2 concentrations. Conversely, orchards and 
deciduous forests were significantly negatively correlated with SO2. 
However, variables, such as elevation and single housing did not reach 
statistical significance, indicating that the current data cannot reliably 
support their effects on SO2 levels.

Similarly, the CO model showed positive relationships with single 
housing, deciduous forests, and other artificial barren areas, whereas the 
river variable was significantly negatively correlated. For O3, significant 
negative predictors included apartment housing, deciduous forests, and 

Table 2 
Predicted air quality changes due to land use changes (Greening) in Dongjak-daero.

Hangang- 
daero

Dosan- 
daero

Seocho- 
gu

Yongsan- 
gu

Gangnam- 
gu

Gwanak- 
gu

Dongjak- 
daero

Gangnam- 
daero

Gwacheon- 
dong

Byeoryang- 
dong

Dongjak- 
gu

SO2 Original 0.0043 0.0038 0.0038 0.0033 0.0047 0.0043 0.0056 0.0039 0.0033 0.0036 0.0033
Pred No 
Change

0.0042 0.0040 0.0040 0.0041 0.0039 0.0040 0.0039 0.0037 0.0036 0.0034 0.0039

Deciduous 
Forest

0.0042 0.0040 0.0040 0.0041 0.0039 0.0040 0.0039 0.0037 0.0036 0.0034 0.0039

Coniferous 
Forest

0.0042 0.0040 0.0040 0.0041 0.0039 0.0040 0.0039 0.0037 0.0036 0.0034 0.0039

Mixed 
Forest

– – – – – – – – – – –

CO Original 0.5793 0.7905 0.3749 0.4941 0.4678 0.4509 0.5995 0.6461 0.5942 0.6176 0.4718
Pred No 
Change

0.5589 0.5282 0.5357 0.5489 0.5411 0.5362 0.5282 0.5285 0.5331 0.5523 0.5280

Deciduous 
Forest

0.5592 0.5420 0.5360 0.5491 0.5414 0.5364 0.5285 0.5288 0.5334 0.5525 0.5282

Coniferous 
Forest

0.5589 0.5417 0.5357 0.5489 0.5411 0.5362 0.5282 0.5286 0.5331 0.5523 0.5280

Mixed 
Forest

– – – – – – – – – – –

O3 Original 0.0170 0.0195 0.0270 0.0229 0.0220 0.0258 0.0170 0.0161 0.0244 0.0232 0.0241
Pred No 
Change

0.0234 0.0216 0.0190 0.0225 0.0197 0.0229 0.0216 0.0213 0.0252 0.0273 0.0222

Deciduous 
Forest

0.0234 0.0203 0.0190 0.0225 0.0197 0.0228 0.0216 0.0213 0.0251 0.0273 0.0221

Coniferous 
Forest

0.0234 0.0203 0.0190 0.0225 0.0197 0.0228 0.0216 0.0213 0.0251 0.0273 0.0222

Mixed 
Forest

0.0234 0.0203 0.0190 0.0225 0.0197 0.0228 0.0216 0.0213 0.0251 0.0273 0.0221

NO2 Original 0.0397 0.0303 0.0300 0.0318 0.0275 0.0305 0.0470 0.0469 0.0256 0.0294 0.0302
Pred No 
Change

0.0342 0.0342 0.0347 0.0341 0.0327 0.0335 0.0342 0.0329 0.0328 0.0320 0.0342

Deciduous 
Forest

– – – – – – – – – – –

Coniferous 
Forest

0.0342 0.0339 0.0347 0.0341 0.0327 0.0335 0.0342 0.0329 0.0328 0.0320 0.0342

Mixed 
Forest

– – – – – – – – – – –

PM10 Original 48.5521 45.9760 43.3098 33.8829 39.8950 48.6406 46.6591 46.2964 42.6036 46.7572 43.5449
Pred No 
Change

45.0509 44.4488 44.6999 44.7248 44.2351 44.6850 44.4488 43.8219 43.9249 43.5393 44.4312

Deciduous 
Forest

– – – – – – – – – – –

Coniferous 
Forest

45.0436 44.4967 44.6924 44.7174 44.2273 44.6791 44.4436 43.8170 43.9177 43.5320 44.4237

Mixed 
Forest

– – – – – – – – – – –

PM2.5 Original 27.5614 25.8506 25.5377 23.7683 24.7205 27.5339 24.8568 25.5783 22.2822 22.1938 26.4567
Pred No 
Change

26.1165 24.2000 24.7671 25.7238 25.2860 24.8759 24.2000 24.2616 23.9556 23.8665 24.0840

Deciduous 
Forest

26.1240 25.1916 24.7759 25.7313 25.2939 24.8850 24.2079 24.2733 23.9631 23.8741 24.0915

Coniferous 
Forest

26.1161 25.1837 24.7680 25.7233 25.2860 24.8771 24.2000 24.2654 23.9552 23.8661 24.0836

Mixed 
Forest

– – – – – – – – – – –
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rivers, with other variables failing to achieve significance. In the case of 
NO2, strong positive associations were found for apartment housing and 
industrial facilities, whereas tidal flats also showed a significant nega
tive effect. Moreover, the PM10 and PM2.5 models revealed that housing 
and agricultural areas are generally associated with higher particulate 
matter concentrations, whereas forested areas contribute to their 
reduction, as indicated by significant negative coefficients.

3.3. Air quality restoration cases

In this study, two distinct scenarios were analyzed to observe how 
land-use changes impact air pollutant concentrations. We first identified 
the effective range of influence for land cover and meteorological 
characteristics on air pollutants. Based on this, we predicted changes in 
air pollutant concentrations when these factors were altered around 

selected AQMSs. The stations were chosen based on their proximity to 
Dongjak-daero and their location within the minimum buffer distance to 
reflect the impact of land cover changes (Fig. 1).

In the first scenario, the road surface of Dongjak-daero was trans
formed into green space by converting it into land cover types, such as 
deciduous, coniferous, and mixed forests, ensuring no multicollinearity 
issues. The goal was to assess the potential reduction in air pollutant 
concentrations by replacing an urban area with green space. Predicted 
pollutant concentrations, such as SO2, CO, NO2, O3, PM10, and PM2.5, 
were compared before and after the change (Table 2).

The analysis showed relatively modest improvements in air quality, 
suggesting that greening smaller urban roads, such as Dongjak-daero 
alone may have limited effectiveness in reducing pollutants. The 
largest observed reduction was in CO, with a notable decrease of 0.0123 
ppm after conversion to coniferous forest, whereas changes in other 

Table 3 
Predicted air quality changes due to land use changes (urbanization) in the greenbelt.

Hangang- 
daero

Dosan- 
daero

Seocho- 
gu

Yongsan- 
gu

Gangnam- 
gu

Gwanak- 
gu

Dongjak- 
daero

Gangnam- 
daero

Gwacheon- 
dong

Byeoryang- 
dong

Dongjak- 
gu

SO2 Original 0.0043 0.0038 0.0038 0.0033 0.0047 0.0043 0.0056 0.0039 0.0033 0.0036 0.0033
Pred No 
Change

0.0042 0.0040 0.0040 0.0041 0.0039 0.0040 0.0039 0.0037 0.0036 0.0034 0.0039

Single 
housing

0.0043 0.0044 0.0045 0.0045 0.0043 0.0042 0.0044 0.0042 0.0041 0.0039 0.0044

Apartment 
Housing

– – – – – – – – – – –

Industrial 
facilities

0.0050 0.0061 0.0062 0.0058 0.0059 0.0051 0.0062 0.0060 0.0059 0.0057 0.0061

CO Original 0.5792 0.7905 0.3749 0.4941 0.4678 0.4509 0.5995 0.6461 0.5942 0.6176 0.4718
Pred No 
Change

0.5589 0.5282 0.5357 0.5489 0.5411 0.5362 0.5282 0.5285 0.5331 0.5523 0.5280

Single 
housing

0.5810 0.6247 0.6233 0.5940 0.6118 0.5746 0.6148 0.6133 0.6215 0.6376 0.6099

Apartment 
Housing

– – – – – – – – – – –

Industrial 
facilities

0.5581 0.5371 0.5309 0.5465 0.5360 0.5351 0.5235 0.5239 0.5282 0.5476 0.5234

O3 Original 0.0170 0.0195 0.0270 0.0229 0.0220 0.0258 0.0170 0.0161 0.0244 0.0232 0.0241
Pred No 
Change

0.0234 0.0216 0.0190 0.0225 0.0197 0.0229 0.0216 0.0213 0.0252 0.0273 0.0222

Single 
housing

0.0234 0.0207 0.0198 0.0225 0.0204 0.0238 0.0229 0.0243 0.0275 0.0290 0.0235

Apartment 
Housing

0.0234 0.0151 0.0083 0.0225 0.0113 0.0088 0.0047 − 0.0155 − 0.0052 0.0042 0.0039

Industrial 
facilities

0.0234 0.0201 0.0185 0.0225 0.0194 0.0221 0.0208 0.0198 0.0238 0.0262 0.0213

NO2 Original 0.0397 0.0303 0.0300 0.0318 0.0275 0.0305 0.0470 0.0469 0.0256 0.0294 0.0302
Pred No 
Change

0.0342 0.0342 0.0347 0.0341 0.0327 0.0335 0.0342 0.0329 0.0328 0.0320 0.0342

Single 
housing

– – – – – – – – – – –

Apartment 
Housing

0.0493 0.0491 0.0498 0.0493 0.0479 0.0486 0.0494 0.0480 0.0479 0.0471 0.0493

Industrial 
facilities

0.0406 0.0403 0.0410 0.0405 0.0391 0.0398 0.0406 0.0393 0.0392 0.0384 0.0405

PM10 Original 48.5521 45.9760 43.3098 33.8829 39.8950 48.6406 46.6591 46.2964 42.6036 46.7572 43.5449
Pred No 
Change

45.0509 44.4488 44.6999 44.7248 44.2351 44.6850 44.4488 43.8219 43.9249 43.5393 44.4312

Single 
housing

– – – – – – – – – – –

Apartment 
Housing

50.2786 49.7317 49.9274 49.9524 49.4623 49.9140 49.6786 49.0520 49.1526 48.7670 49.6587

Industrial 
facilities

48.2692 47.7223 47.9180 47.9430 47.4529 47.9046 47.6692 47.0426 47.1432 46.7576 47.6493

PM2.5 Original 27.5614 25.8505 25.5377 23.7683 24.7205 27.5338 24.8568 25.5783 22.2822 22.1937 26.4567
Pred No 
Change

26.1165 24.2000 24.7671 25.7237 25.2859 24.8759 24.2000 24.2616 23.9556 23.8665 24.0840

Single 
housing

27.4480 30.1654 30.0212 28.4307 29.5354 27.1849 29.3990 29.3539 29.2625 28.9907 29.0015

Apartment 
Housing

– – – – – – – – – – –

Industrial 
facilities

26.0577 24.8614 24.4303 25.5554 24.9484 24.7930 23.8679 23.9427 23.6112 23.5382 23.7649
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pollutants were minimal.
The second scenario assessed the impact of converting adjacent 

greenbelt areas into urban developments, such as single housing, 
apartment buildings, and industrial facilities. This scenario had more 
significant negative effects on air quality compared to road greening 
(Table 3). For instance, when the greenbelt was converted into industrial 
areas, there was a substantial increase in SO2 (0.001936 ppm) and PM10 
(5.2331 μg/m3), demonstrating that urbanization has a considerable 
adverse impact on pollutant concentrations. Furthermore, converting 
greenbelts into single housing increased PM2.5 concentrations by 
4.314206 μg/m3, underscoring the crucial role that green spaces play in 
maintaining better air quality.

4. Discussion

Linear regression analysis provided better explanatory power than 
XGBoost, a representative machine learning model, in explaining urban 
environmental factors, including land use within a defined spatial range, 
based on data from 351 to 365 AQMSs. This result is probably due to the 
small sample size used in the analysis, which is consistent with previous 

studies that explored the correlation between urban air quality and 
urban environments (Johnson et al., 2010; Lai et al., 2021). This sug
gests that rather than unconditionally applying machine learning or 
deep learning models for prediction and relationship analysis, re
searchers should assess experimental conditions, such as the sample size, 
and determine the appropriate model through empirical testing. This 
also implies that simple linear regression analysis is a viable candidate 
model for such analyses.

Furthermore, the analysis results indicate that the explanatory power 
of air quality concentration varies with the spatial range and urban 
environment, including land use and land cover, depending on the 
characteristics of each air quality parameter. For example, the explan
atory power for O3 was significant at 6000 m, whereas that for NO2 and 
PM10 was significant at 18,000 m. This suggests that urban and envi
ronmental planning should consider spatial influences on air quality. 
Previous studies (Weng and Yang, 2006; Li et al., 2015) have often 
considered narrow buffer zones of only a few hundred meters. 
Conversely, this study analyzed the relationship between the air quality 
and urban environment over a broader buffer range of 6–18 km. This 
broader spatial analysis highlights the fact that extensive urban envi
ronments can significantly affect air quality and should be considered in 
future urban and environmental planning. Additionally, this study found 
that certain air quality parameters exhibited a strong explanatory rela
tionship with the surrounding urban environment, including land use, 
whereas others exhibited a weaker association. Therefore, future 
land-use changes or land-use planning should consider specific air 
quality parameters that can be effectively analyzed for environmental 
impact assessments.

In this study, the analysis was performed based on the direct distance 
that demonstrated the highest explanatory power. Similar analyses often 
consume several computing resources to calculate the urban environ
ment within large areas that span a radius of several kilometers. 
Therefore, when there is a notable difference in explanatory power, it is 
necessary to select a suitable consensus range for analysis that considers 
various factors, such as computing resources and analysis time. For 
example, for the case of SO2 conducted in this study, the optimal buffer 
distance for SO2 was determined to be 12,000 m, yielding the highest 
explanatory power (R2 = 0.3402). However, the differences in R2 values 
among the 11,000-m (R2 = 0.34), 12,000-m (R2 = 0.3402), and 13,000- 
m (R2 = 0.34) distances were minimal. If there is no significant differ
ence in explanatory power, 1100 m can be considered the optimal 
analysis range, as it balances efficiency in analysis time and the utili
zation of computing resources.

The analysis of the urban environment within a certain range around 

Fig. 4. Air quality monitoring data used in air quality concentration analysis.

Fig. 5. Land-use change Scenarios(Scenario 1: Road greening, scenario 2: Greenbelt development).
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each AQMS and the characteristics of the air pollutant concentrations 
showed that the impact on air quality varied according to the charac
teristics of the urban environment. This implies that urban planning 
should consider the urban environment and spatial range, including 
surrounding land use and land cover.

Consistent with previous research, NO2 showed a strong positive 
correlation with surrounding apartment housing, suggesting that NOx, 
although naturally occurring, significantly increased owing to human 
industrial activities, especially from combustion facilities, such as 
boilers in commercial and residential buildings (Yue et al., 2018). For 
PM10, agricultural areas, such as paddy fields (Li and Huang, 2020), and 
apartment housing showed a strong positive correlation. Conversely, the 
forest area exhibited a negative relation with PM10. Further, PM2.5 
concentrations were higher in areas with a high density of single-family 
housing and, similar to PM10, lower in areas with extensive forest cover. 
Additionally, paddy fields, unconsolidated upland fields, and consoli
dated paddy fields were positively correlated with PM2.5, similar to 

other barren lands. This result is consistent with those of previous 
studies, indicating that barren lands contribute to fine dust generation 
(Pinho et al., 2008).

However, for PM2.5, the same type of forest showed different re
lations: coniferous forests exhibited a negative correlation, whereas 
deciduous forests showed a positive correlation. When constructing 
land-cover maps in South Korea, security facilities, such as military in
stallations, airports, and power plants, are often reclassified as agricul
tural or barren land. This classification may have influenced the 
analysis, necessitating additional reviews to validate the impact of these 
factors. Therefore, future research should focus on examining the spe
cific effects of these facilities on air quality.

Many of our findings align with existing knowledge, such as the 
positive association between industrial facilities with SO2, NO2, and 
particulate matter, and the mitigating effect of forested areas on PM10 
and PM2.5. However, certain results appear less intuitive. In particular, 
air pollutants, such as CO and SO2 exhibited low explanatory power in 

Fig. 6. Explanatory Power (R2) of Multiple Linear Regression and XGBoost by Buffer Distance for each air pollutant.
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the linear regression analysis, lacking sufficient explanatory power in 
terms of their relationship with land cover. For example, deciduous 
forests showed a positive correlation with CO, however, a negative 
correlation with SO2. Examining the results of models with low 
explanatory power reveals that several predictor variables had low p- 
values, indicating weak explanatory relationships between specific land 
cover types and air pollutant concentrations. Similarly, factors expected 
to reduce pollution levels, such as high elevation or proximity to rivers, 
may correspond to high-traffic transport corridors or small residential 
combustion areas, contributing to increased levels of CO, NO2, and 
PM10, as observed in Jain et al. (2021). These cases suggest that land 
cover variables may act as proxies for unmeasured factors (e.g., heating 
fuel, traffic intensity, or tourism activities), complicating purely linear 
interpretations. This underscores the need to consider nonlinearity and 
regional drivers of air quality, as well as the necessity of incorporating 
additional emissions and meteorological data to completely explain the 
localized surges of specific pollutants, such as CO. Therefore, when 
predicting the concentrations of air pollutants that have weak explan
atory power in relation to land cover, additional predictor variables 
must be incorporated and more sophisticated modeling approaches must 
be considered to better capture the complex interactions between land 
cover and air pollution.

Using the model developed in this study, we predicted changes in air 
pollutant concentrations caused by changes in land cover. However, 
restoration performed in small areas provided minimal improvement in 
air quality. Conversely, the significant development in the area was 
predicted to increase air pollutant concentrations. Notably, when large- 
scale development projects were undertaken in previously green spaces, 
air pollutant concentrations were predicted to increase significantly. 
These results are consistent with those of most previous studies that have 
examined changes in air quality due to land use and land cover changes. 
However, this study demonstrated the ability to apply Level-3 land use 
changes, distinguishing it from previous studies that primarily examined 
land use and land cover changes over broader areas.

Finally, vegetation indices, such as NDVI, which indirectly assess the 
quality of green spaces, were excluded from the regression analysis due 
to multicollinearity issues identified during the pre-analysis. This is 
because most forests in South Korea exhibit high vegetation vitality (Lee 
and Park, 2020). Additionally, as the forests of South Korea are pri
marily located in high-altitude mountainous areas, we included 
high-altitude regions in the analysis. Consequently, when predicting 
future land use changes, this could lead to the exclusion of green space 
quality. Therefore, future research should develop methodologies that 
incorporate the quality of green spaces into their analysis.

5. Conclusion

This study aimed to provide crucial baseline information for urban 
planning and policymaking by analyzing the impact of land cover- and 
land use-related independent variables on air pollutant concentrations. 
The findings offer valuable insights into urban air quality, including 
more effective urban planning and environmental management strate
gies that can be developed. However, several limitations exist in 
deriving and interpreting the results.

First, the limited number of AQMSs led to a higher explanatory 
power for linear regression analysis compared to machine learning 
models. Therefore, increasing the number of AQMSs and data samples 
will improve the performance of machine-learning models. Future 
research should focus on collecting additional data from various envi
ronments to construct more reliable models. Second, vegetation indices, 
such as NDVI, were excluded from the linear regression model due to 
high multicollinearity, which prevented the consideration of green 
space quality. Therefore, future research should develop methods to 
incorporate greenspace quality into the analysis.

Similar to other studies, this research also has some methodological 
constraints. First, because the dataset is confined to South Korea and the 

number of AQMS (360) is limited, it is difficult to generalize the results. 
Moreover, while this study mainly compared regression analysis and 
machine learning approaches, there is a potential for more in-depth 
findings by applying complex methodologies such as spatiotemporal 
data analysis, network analysis, or multilevel modeling. These meth
odologies could offer a more nuanced explanation of the complex in
teractions between urban structure and air pollution, warranting 
consideration in future research.

The findings of this study also provide important insights for urban 
planning and policymaking. First, the fact that air pollutant concentra
tions vary depending on spatial scale indicates that specific spatial 
ranges must be considered in urban design. For example, NO2 and PM10 
exhibited effects over a wider area of about 18 km, whereas O3 showed 
measurable impacts even within a narrower range of around 6 km. This 
highlights the need to develop tailored policies that consider the diverse 
land-use patterns within a city.

Moreover, small-scale urban development efforts, such as green 
space restoration, had a limited impact on improving air quality, 
whereas the urbanization of green belts had a significantly negative 
effect. These findings emphasize the need to preserve green belts and 
enforce strict regulations to minimize environmental harm during large- 
scale development projects. Such insights can be used to inform various 
environmental impact assessments and formulate climate change 
adaptation policies.

As certain air pollutants showed low explanatory power in the model 
presented in this study, future research should utilize a broader range of 
predictor variables to better explain these air pollutant concentrations. 
Additionally, more sophisticated modeling approaches should be 
considered to better capture the complex interactions between land 
cover and air pollution. Given the limitations of currently available 
official datasets, including time-series data, future studies should focus 
on collecting more diverse and comprehensive datasets to enhance 
model accuracy and interpretability.
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